cgvict / roLabelImg

Label Rotated Rect On Images for training
835 stars 223 forks source link

roLabelImg

.. image:: https://img.shields.io/pypi/v/labelimg.svg :target: https://pypi.python.org/pypi/labelimg

.. image:: https://img.shields.io/travis/tzutalin/labelImg.svg :target: https://travis-ci.org/tzutalin/labelImg

roLabelImg is a graphical image annotation tool can label ROTATED rectangle regions, which is rewrite from 'labelImg'.

The original version 'labelImg''s link is herehttps://github.com/tzutalin/labelImg.

It is written in Python and uses Qt for its graphical interface.

Watch a demo by author cgvict

.. image:: https://raw.githubusercontent.com/cgvict/roLabelImg/master/demo/demo4.png :alt: Demo Image

.. image:: https://raw.githubusercontent.com/cgvict/roLabelImg/master/demo/demo_v2.5.gif

https://youtu.be/7D5lvol_QRA

Annotations are saved as XML files almost like PASCAL VOC format, the format used by ImageNet <http://www.image-net.org/>__.

XML Format

.. code::

<annotation verified="yes">
  <folder>hsrc</folder>
  <filename>100000001</filename>
  <path>/Users/haoyou/Library/Mobile Documents/com~apple~CloudDocs/OneDrive/hsrc/100000001.bmp</path>
  <source>
    <database>Unknown</database>
  </source>
  <size>
    <width>1166</width>
    <height>753</height>
    <depth>3</depth>
  </size>
  <segmented>0</segmented>
  <object>
    <type>bndbox</type>
    <name>ship</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>178</xmin>
      <ymin>246</ymin>
      <xmax>974</xmax>
      <ymax>504</ymax>
    </bndbox>
  </object>
  <object>
    <type>robndbox</type>
    <name>ship</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <robndbox>
      <cx>580.7887</cx>
      <cy>343.2913</cy>
      <w>775.0449</w>
      <h>170.2159</h>
      <angle>2.889813</angle>
    </robndbox>
  </object>
</annotation>

Installation

Download prebuilt binaries of original 'labelImg'


-  `Windows & Linux <http://tzutalin.github.io/labelImg/>`__

-  OS X. Binaries for OS X are not yet available. Help would be appreciated. At present, it must be `built from source <#os-x>`__.

Build from source

Linux/Ubuntu/Mac requires at least Python 2.6 <http://www.python.org/getit/> and has been tested with PyQt 4.8 <http://www.riverbankcomputing.co.uk/software/pyqt/intro>.

Ubuntu Linux ^^^^^^^^^^^^

.. code::

sudo apt-get install pyqt4-dev-tools
sudo pip install lxml
make all
./roLabelImg.py
./roLabelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

OS X ^^^^

.. code::

brew install qt qt4
brew install libxml2
make all
./roLabelImg.py
./roLabelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Windows ^^^^^^^

Download and setup Python 2.6 or later <https://www.python.org/downloads/windows/>, PyQt4 <https://www.riverbankcomputing.com/software/pyqt/download> and install lxml <http://lxml.de/installation.html>__.

Open cmd and go to roLabelImg <#roLabelimg>__ directory

.. code::

pyrcc4 -o resources.py resources.qrc
python roLabelImg.py
python roLabelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Use Docker

.. code::

    docker pull tzutalin/py2qt4

    docker run -it \
    --user $(id -u) \
    -e DISPLAY=unix$DISPLAY \
    --workdir=$(pwd) \
    --volume="/home/$USER:/home/$USER" \
    --volume="/etc/group:/etc/group:ro" \
    --volume="/etc/passwd:/etc/passwd:ro" \
    --volume="/etc/shadow:/etc/shadow:ro" \
    --volume="/etc/sudoers.d:/etc/sudoers.d:ro" \
    -v /tmp/.X11-unix:/tmp/.X11-unix \
    tzutalin/py2qt4

You can pull the image which has all of the installed and required dependencies.  

Usage
-----

Steps
  1. Build and launch using the instructions above.
  2. Click 'Change default saved annotation folder' in Menu/File
  3. Click 'Open Dir'
  4. Click 'Create RectBox'
  5. Click and release left mouse to select a region to annotate the rect box
  6. You can use right mouse to drag the rect box to copy or move it

The annotation will be saved to the folder you specify.

You can refer to the below hotkeys to speed up your workflow.

Create pre-defined classes


You can edit the
`data/predefined\_classes.txt <https://github.com/tzutalin/labelImg/blob/master/data/predefined_classes.txt>`__
to load pre-defined classes

Hotkeys

+------------+--------------------------------------------+ | Ctrl + u | Load all of the images from a directory | +------------+--------------------------------------------+ | Ctrl + r | Change the default annotation target dir | +------------+--------------------------------------------+ | Ctrl + s | Save | +------------+--------------------------------------------+ | Ctrl + d | Copy the current label and rect box | +------------+--------------------------------------------+ | Space | Flag the current image as verified | +------------+--------------------------------------------+ | w | Create a rect box | +------------+--------------------------------------------+ | e | Create a Rotated rect box | +------------+--------------------------------------------+ | d | Next image | +------------+--------------------------------------------+ | a | Previous image | +------------+--------------------------------------------+ | r | Hidden/Show Rotated Rect boxes | +------------+--------------------------------------------+ | n | Hidden/Show Normal Rect boxes | +------------+--------------------------------------------+ | del | Delete the selected rect box | +------------+--------------------------------------------+ | Ctrl++ | Zoom in | +------------+--------------------------------------------+ | Ctrl-- | Zoom out | +------------+--------------------------------------------+ | ↑→↓← | Keyboard arrows to move selected rect box | +------------+--------------------------------------------+ | zxcv | Keyboard to rotate selected rect box | +------------+--------------------------------------------+

How to contribute


Send a pull request

License

Free software: MIT license <https://github.com/cgvict/roLabelImg/blob/master/LICENSE>_

Related



1. `ImageNet Utils <https://github.com/tzutalin/ImageNet_Utils>`__ to
   download image, create a label text for machine learning, etc
2. `Docker hub to run it <https://hub.docker.com/r/tzutalin/py2qt4>`__