Input alterations currently include: - rotation - cropping -
brightness - contrast - zooming - flipping (dihedral) - resizing - MR
artifacts (via torchio
)
pip install misas
If you use misas
in your research, please cite: > Ankenbrand, M. J.,
Shainberg, L., Hock, M., Lohr, D., & Schreiber, L. M. Sensitivity
analysis for interpretation of machine learning based segmentation
models in cardiac MRI. BMC Medical Imaging, 21(27).
https://doi.org/10.1186/s12880-021-00551-1
If you use the simulated MR artifacts, please also cite torchio
: > F.
Pérez-García, R. Sparks, and S. Ourselin. TorchIO: a Python library for
efficient loading, preprocessing, augmentation and patch-based sampling
of medical images in deep learning. Computer Methods and Programs in
Biomedicine (June 2021), p. 106236. ISSN: 0169-2607.
https://doi.org/10.1016/j.cmpb.2021.106236
Example with kaggle data
from misas.core import *
from misas.core import default_cmap, default_cmap_true_mask
from misas.fastai_model import Fastai2_model
from PIL import Image, ImageEnhance, ImageOps
from functools import partial
from tqdm.notebook import tqdm
import matplotlib.pyplot as plt
import numpy as np
def label_func(x):
pass
def acc_seg(input, target):
pass
def diceComb(input, targs):
pass
def diceLV(input, targs):
pass
def diceMY(input, targs):
pass
img = lambda: Image.open("example/kaggle/images/1-frame014-slice005.png").convert("RGB")
trueMask = lambda: Image.open("example/kaggle/masks/1-frame014-slice005.png").convert("I")
trainedModel = Fastai2_model("chfc-cmi/cmr-seg-tl", "cmr_seg_base", force_reload=False)
fig, ax = plt.subplots(figsize=(8,8))
ax.imshow(np.array(img()))
ax.imshow(np.array(trueMask()), cmap=default_cmap_true_mask, alpha=.5, interpolation="nearest")
ax.axes.xaxis.set_visible(False)
ax.axes.yaxis.set_visible(False)
Using cache found in /home/csa84mikl/.cache/torch/hub/chfc-cmi_cmr-seg-tl_master
plot_series(get_rotation_series(img(), trainedModel))
0%| | 0/7 [00:00<?, ?it/s]
[W NNPACK.cpp:51] Could not initialize NNPACK! Reason: Unsupported hardware.
results = eval_rotation_series(img(), trueMask(), trainedModel)
plt.plot(results['deg'], results['c1'])
plt.plot(results['deg'], results['c2'])
plt.axis([0,360,0,1])
0%| | 0/72 [00:00<?, ?it/s]
(0.0, 360.0, 0.0, 1.0)
You can use interactive elements to manually explore the impact of rotation
from ipywidgets import interact, interactive, fixed, interact_manual
import ipywidgets as widgets
rotation_series = get_rotation_series(img(),trainedModel,step=10)
0%| | 0/37 [00:00<?, ?it/s]
def plot_rotation_frame(deg):
return plot_frame(*rotation_series[int(deg/10)], figsize=(10,10))
interact(
plot_rotation_frame,
deg=widgets.IntSlider(min=0, max=360, step=10, value=90, continuous_update=False)
)
interactive(children=(IntSlider(value=90, continuous_update=False, description='deg', max=360, step=10), Outpu…
<function __main__.plot_rotation_frame(deg)>
There are lots of other transformations to try (e.g. cropping, brightness, contrast, …) as well as MR specific artifacts.
This is the schematic overview of how misas
works. Created with the
amazing Excalidraw.
The logo was designed by Markus J. Ankenbrand using: - Open box / Boite ouverte by SimpleIcons via openclipart.org - Cutter icon by SimpleIcons via openclipart.org, original by Marco Olgio, via WikiMedia - Hack Font - Inkscape
This project is inspired by the awesome “Is it a Duck or Rabbit” tweet by @minimaxir. Also check out the corresponding repo.
<blockquote class="twitter-tweet"><p lang="en" dir="ltr">Is it a Duck or a Rabbit? For Google Cloud Vision, it depends how the image is rotated. <a href="https://t.co/a30VzjEXVv">pic.twitter.com/a30VzjEXVv</a></p>— Max Woolf (@minimaxir) <a href="https://twitter.com/minimaxir/status/1103676561809539072?ref_src=twsrc%5Etfw">March 7, 2019</a></blockquote> <script async src="https://platform.twitter.com/widgets.js" charset="utf-8"></script>
## Changes ### 0.1.0 \<2022-07-14\> - Re-write internal function to use pillow instead of fastai (version 1) ### 0.0.4 \<2021-01-14\> - Initial releaseIs it a Duck or a Rabbit? For Google Cloud Vision, it depends how the image is rotated. pic.twitter.com/a30VzjEXVv
— Max Woolf (@minimaxir) March 7, 2019