choonghyunryu / dlookr

Tools for Data Diagnosis, Exploration, Transformation
https://choonghyunryu.github.io/dlookr/
209 stars 35 forks source link

dlookr

CRAN_Status_Badge Total
Downloads

Overview

Diagnose, explore and transform data with dlookr.

Features:

The name dlookr comes from looking at the data in the data analysis process.

Install dlookr

The released version is available on CRAN

install.packages("dlookr")

Or you can get the development version without vignettes from GitHub:

devtools::install_github("choonghyunryu/dlookr")

Or you can get the development version with vignettes from GitHub:

install.packages(c("DBI", "RSQLite"))
devtools::install_github("choonghyunryu/dlookr", build_vignettes = TRUE)

Usage

dlookr includes several vignette files, which we use throughout the documentation.

Provided vignettes is as follows.

browseVignettes(package = "dlookr")

Data quality diagnosis

Data: flights

To illustrate basic use of the dlookr package, use the flights data in dlookr from the nycflights13 package. The flights data frame contains departure and arrival information on all flights departing from NYC(i.e. JFK, LGA or EWR) in 2013.

library(dlookr)
#> 
#> Attaching package: 'dlookr'
#> The following object is masked from 'package:base':
#> 
#>     transform
data(flights)
dim(flights)
#> [1] 3000   19
flights
#> # A tibble: 3,000 × 19
#>     year month   day dep_time sched_dep_time dep_delay arr_time sched_arr_time
#>    <int> <int> <int>    <int>          <int>     <dbl>    <int>          <int>
#>  1  2013     6    17     1033           1040        -7     1246           1309
#>  2  2013    12    26     1343           1329        14     1658           1624
#>  3  2013     8    26     1258           1218        40     1510           1516
#>  4  2013     8    17     1558           1600        -2     1835           1849
#>  5  2013     2    17       NA           1500        NA       NA           1653
#>  6  2013     6    30      905            900         5     1200           1206
#>  7  2013     9    15     1017           1025        -8     1245           1325
#>  8  2013     5     7     1623           1627        -4     1819           1818
#>  9  2013     3    14      703            645        18      854            846
#> 10  2013     9     4      739            740        -1     1030           1055
#> # ℹ 2,990 more rows
#> # ℹ 11 more variables: arr_delay <dbl>, carrier <chr>, flight <int>,
#> #   tailnum <chr>, origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>,
#> #   hour <dbl>, minute <dbl>, time_hour <dttm>

General diagnosis of all variables with diagnose()

diagnose() allows you to diagnose variables on a data frame. Like any other dplyr functions, the first argument is the tibble (or data frame). The second and subsequent arguments refer to variables within the data frame.

The variables of the tbl_df object returned by diagnose () are as follows.

For example, we can diagnose all variables in flights:

library(dlookr)
library(dplyr)

diagnose(flights)
#> # A tibble: 19 × 6
#>    variables      types   missing_count missing_percent unique_count unique_rate
#>    <chr>          <chr>           <int>           <dbl>        <int>       <dbl>
#>  1 year           integer             0           0                1    0.000333
#>  2 month          integer             0           0               12    0.004   
#>  3 day            integer             0           0               31    0.0103  
#>  4 dep_time       integer            82           2.73           982    0.327   
#>  5 sched_dep_time integer             0           0              588    0.196   
#>  6 dep_delay      numeric            82           2.73           204    0.068   
#>  7 arr_time       integer            87           2.9           1010    0.337   
#>  8 sched_arr_time integer             0           0              920    0.307   
#>  9 arr_delay      numeric            89           2.97           236    0.0787  
#> 10 carrier        charac…             0           0               15    0.005   
#> 11 flight         integer             0           0             1428    0.476   
#> 12 tailnum        charac…            23           0.767         1704    0.568   
#> 13 origin         charac…             0           0                3    0.001   
#> 14 dest           charac…             0           0               93    0.031   
#> 15 air_time       numeric            89           2.97           339    0.113   
#> 16 distance       numeric             0           0              184    0.0613  
#> 17 hour           numeric             0           0               19    0.00633 
#> 18 minute         numeric             0           0               60    0.02    
#> 19 time_hour      POSIXct             0           0             2391    0.797

year can be considered not to be used in the analysis model since unique_count is 1. However, you do not have to remove it if you configure date as a combination of year, month, and day.

For example, we can diagnose only a few selected variables:

# Select columns by name
diagnose(flights, year, month, day)
#> # A tibble: 3 × 6
#>   variables types   missing_count missing_percent unique_count unique_rate
#>   <chr>     <chr>           <int>           <dbl>        <int>       <dbl>
#> 1 year      integer             0               0            1    0.000333
#> 2 month     integer             0               0           12    0.004   
#> 3 day       integer             0               0           31    0.0103
# Select all columns between year and day (include)
diagnose(flights, year:day)
#> # A tibble: 3 × 6
#>   variables types   missing_count missing_percent unique_count unique_rate
#>   <chr>     <chr>           <int>           <dbl>        <int>       <dbl>
#> 1 year      integer             0               0            1    0.000333
#> 2 month     integer             0               0           12    0.004   
#> 3 day       integer             0               0           31    0.0103
# Select all columns except those from year to day (exclude)
diagnose(flights, -(year:day))
#> # A tibble: 16 × 6
#>    variables      types   missing_count missing_percent unique_count unique_rate
#>    <chr>          <chr>           <int>           <dbl>        <int>       <dbl>
#>  1 dep_time       integer            82           2.73           982     0.327  
#>  2 sched_dep_time integer             0           0              588     0.196  
#>  3 dep_delay      numeric            82           2.73           204     0.068  
#>  4 arr_time       integer            87           2.9           1010     0.337  
#>  5 sched_arr_time integer             0           0              920     0.307  
#>  6 arr_delay      numeric            89           2.97           236     0.0787 
#>  7 carrier        charac…             0           0               15     0.005  
#>  8 flight         integer             0           0             1428     0.476  
#>  9 tailnum        charac…            23           0.767         1704     0.568  
#> 10 origin         charac…             0           0                3     0.001  
#> 11 dest           charac…             0           0               93     0.031  
#> 12 air_time       numeric            89           2.97           339     0.113  
#> 13 distance       numeric             0           0              184     0.0613 
#> 14 hour           numeric             0           0               19     0.00633
#> 15 minute         numeric             0           0               60     0.02   
#> 16 time_hour      POSIXct             0           0             2391     0.797

By using with dplyr, variables including missing values can be sorted by the weight of missing values.:

flights %>%
  diagnose() %>%
  select(-unique_count, -unique_rate) %>% 
  filter(missing_count > 0) %>% 
  arrange(desc(missing_count))
#> # A tibble: 6 × 4
#>   variables types     missing_count missing_percent
#>   <chr>     <chr>             <int>           <dbl>
#> 1 arr_delay numeric              89           2.97 
#> 2 air_time  numeric              89           2.97 
#> 3 arr_time  integer              87           2.9  
#> 4 dep_time  integer              82           2.73 
#> 5 dep_delay numeric              82           2.73 
#> 6 tailnum   character            23           0.767

Diagnosis of numeric variables with diagnose_numeric()

diagnose_numeric() diagnoses numeric(continuous and discrete) variables in a data frame. Usage is the same as diagnose() but returns more diagnostic information. However, if you specify a non-numeric variable in the second and subsequent argument list, the variable is automatically ignored.

The variables of the tbl_df object returned by diagnose_numeric() are as follows.

The summary() function summarizes the distribution of individual variables in the data frame and outputs it to the console. The summary values of numeric variables are min, Q1, mean, median, Q3 and max, which help to understand the distribution of data.

However, the result displayed on the console has the disadvantage that the analyst has to look at it with the eyes. However, when the summary information is returned in a data frame structure such as tbl_df, the scope of utilization is expanded. diagnose_numeric() supports this.

zero, minus, and outlier are useful measures to diagnose data integrity. For example, numerical data in some cases cannot have zero or negative numbers. A numeric variable called employee salary cannot have negative numbers or zeros. Therefore, this variable should be checked for the inclusion of zero or negative numbers in the data diagnosis process.

diagnose_numeric() can diagnose all numeric variables of flights as follows.:

diagnose_numeric(flights)
#> # A tibble: 14 × 10
#>    variables        min      Q1    mean median      Q3   max  zero minus outlier
#>    <chr>          <dbl>   <dbl>   <dbl>  <dbl>   <dbl> <dbl> <int> <int>   <int>
#>  1 year            2013 2013    2013     2013  2013     2013     0     0       0
#>  2 month              1    4       6.54     7     9.25    12     0     0       0
#>  3 day                1    8      15.8     16    23       31     0     0       0
#>  4 dep_time           1  905.   1354.    1417  1755     2359     0     0       0
#>  5 sched_dep_time   500  910    1354.    1415  1740     2359     0     0       0
#>  6 dep_delay        -22   -5      13.6     -1    12     1126   143  1618     401
#>  7 arr_time           2 1106    1517.    1547  1956     2400     0     0       0
#>  8 sched_arr_time     1 1125    1548.    1604. 1957     2359     0     0       0
#>  9 arr_delay        -70  -17       7.13    -5    15     1109    43  1686     250
#> 10 flight             1  529    1952.    1460  3434.    6177     0     0       0
#> 11 air_time          24   79     149.     126   191      639     0     0      38
#> 12 distance          94  488    1029.     820  1389     4983     0     0       3
#> 13 hour               5    9      13.3     14    17       23     0     0       0
#> 14 minute             0    9.75   26.4     29    44       59   527     0       0

If a numeric variable can not logically have a negative or zero value, it can be used with filter() to easily find a variable that does not logically match:

diagnose_numeric(flights) %>% 
  filter(minus > 0 | zero > 0) 
#> # A tibble: 3 × 10
#>   variables   min     Q1  mean median    Q3   max  zero minus outlier
#>   <chr>     <dbl>  <dbl> <dbl>  <dbl> <dbl> <dbl> <int> <int>   <int>
#> 1 dep_delay   -22  -5    13.6      -1    12  1126   143  1618     401
#> 2 arr_delay   -70 -17     7.13     -5    15  1109    43  1686     250
#> 3 minute        0   9.75 26.4      29    44    59   527     0       0

Diagnosis of categorical variables with diagnose_category()

diagnose_category() diagnoses the categorical(factor, ordered, character) variables of a data frame. The usage is similar to diagnose() but returns more diagnostic information. If you specify a non-categorical variable in the second and subsequent argument list, the variable is automatically ignored.

The top argument specifies the number of levels to return for each variable. The default is 10, which returns the top 10 level. Of course, if the number of levels is less than 10, all levels are returned.

The variables of the tbl_df object returned by diagnose_category() are as follows.

`diagnose_category() can diagnose all categorical variables of flights as follows.:

diagnose_category(flights)
#> # A tibble: 43 × 6
#>    variables levels     N  freq ratio  rank
#>    <chr>     <chr>  <int> <int> <dbl> <int>
#>  1 carrier   UA      3000   551 18.4      1
#>  2 carrier   EV      3000   493 16.4      2
#>  3 carrier   B6      3000   490 16.3      3
#>  4 carrier   DL      3000   423 14.1      4
#>  5 carrier   AA      3000   280  9.33     5
#>  6 carrier   MQ      3000   214  7.13     6
#>  7 carrier   US      3000   182  6.07     7
#>  8 carrier   9E      3000   151  5.03     8
#>  9 carrier   WN      3000   105  3.5      9
#> 10 carrier   VX      3000    54  1.8     10
#> # ℹ 33 more rows

In collaboration with filter() in the dplyr package, we can see that the tailnum variable is ranked in top 1 with 2,512 missing values in the case where the missing value is included in the top 10:

diagnose_category(flights) %>% 
  filter(is.na(levels))
#> # A tibble: 1 × 6
#>   variables levels     N  freq ratio  rank
#>   <chr>     <chr>  <int> <int> <dbl> <int>
#> 1 tailnum   <NA>    3000    23 0.767     1

The following example returns a list where the level’s relative percentage is 0.01% or less. Note that the value of the top argument is set to a large value such as 500. If the default value of 10 was used, values below 0.01% would not be included in the list:

flights %>%
  diagnose_category(top = 500)  %>%
  filter(ratio <= 0.01)
#> # A tibble: 0 × 6
#> # ℹ 6 variables: variables <chr>, levels <chr>, N <int>, freq <int>,
#> #   ratio <dbl>, rank <int>

In the analytics model, you can also consider removing levels where the relative frequency is very small in the observations or, if possible, combining them together.

Diagnosing outliers with diagnose_outlier()

diagnose_outlier() diagnoses the outliers of the numeric (continuous and discrete) variables of the data frame. The usage is the same as diagnose().

The variables of the tbl_df object returned by diagnose_outlier() are as follows.

diagnose_outlier() can diagnose outliers of all numerical variables on flights as follows:

diagnose_outlier(flights)
#> # A tibble: 14 × 6
#>    variables    outliers_cnt outliers_ratio outliers_mean with_mean without_mean
#>    <chr>               <int>          <dbl>         <dbl>     <dbl>        <dbl>
#>  1 year                    0           0            NaN     2013        2013    
#>  2 month                   0           0            NaN        6.54        6.54 
#>  3 day                     0           0            NaN       15.8        15.8  
#>  4 dep_time                0           0            NaN     1354.       1354.   
#>  5 sched_dep_t…            0           0            NaN     1354.       1354.   
#>  6 dep_delay             401          13.4           94.4     13.6         0.722
#>  7 arr_time                0           0            NaN     1517.       1517.   
#>  8 sched_arr_t…            0           0            NaN     1548.       1548.   
#>  9 arr_delay             250           8.33         121.       7.13       -3.52 
#> 10 flight                  0           0            NaN     1952.       1952.   
#> 11 air_time               38           1.27         389.     149.        146.   
#> 12 distance                3           0.1         4970.    1029.       1025.   
#> 13 hour                    0           0            NaN       13.3        13.3  
#> 14 minute                  0           0            NaN       26.4        26.4

Numeric variables that contained outliers are easily found with filter().:

diagnose_outlier(flights) %>% 
  filter(outliers_cnt > 0) 
#> # A tibble: 4 × 6
#>   variables outliers_cnt outliers_ratio outliers_mean with_mean without_mean
#>   <chr>            <int>          <dbl>         <dbl>     <dbl>        <dbl>
#> 1 dep_delay          401          13.4           94.4     13.6         0.722
#> 2 arr_delay          250           8.33         121.       7.13       -3.52 
#> 3 air_time            38           1.27         389.     149.        146.   
#> 4 distance             3           0.1         4970.    1029.       1025.

The following example finds a numeric variable with an outlier ratio of 5% or more, and then returns the result of dividing mean of outliers by total mean in descending order:

diagnose_outlier(flights) %>% 
  filter(outliers_ratio > 5) %>% 
  mutate(rate = outliers_mean / with_mean) %>% 
  arrange(desc(rate)) %>% 
  select(-outliers_cnt)
#> # A tibble: 2 × 6
#>   variables outliers_ratio outliers_mean with_mean without_mean  rate
#>   <chr>              <dbl>         <dbl>     <dbl>        <dbl> <dbl>
#> 1 arr_delay           8.33         121.       7.13       -3.52  16.9 
#> 2 dep_delay          13.4           94.4     13.6         0.722  6.94

In cases where the mean of the outliers is large relative to the overall average, it may be desirable to impute or remove the outliers.

Visualization of outliers using plot_outlier()

plot_outlier() visualizes outliers of numerical variables(continuous and discrete) of data.frame. Usage is the same diagnose().

The plot derived from the numerical data diagnosis is as follows.

The following example uses diagnose_outlier(), plot_outlier(), and dplyr packages to visualize all numerical variables with an outlier ratio of 0.5% or higher.

flights %>%
  plot_outlier(diagnose_outlier(flights) %>% 
                 filter(outliers_ratio >= 0.5) %>% 
                 select(variables) %>% 
                 unlist())

Analysts should look at the results of the visualization to decide whether to remove or replace outliers. In some cases, you should consider removing variables with outliers from the data analysis model.

Looking at the results of the visualization, arr_delay shows that the observed values without outliers are similar to the normal distribution. In the case of a linear model, we might consider removing or imputing outliers. And air_time has a similar shape before and after removing outliers.

Exploratory Data Analysis

datasets

To illustrate the basic use of EDA in the dlookr package, I use a Carseats dataset. Carseats in the ISLR package is a simulated data set containing sales of child car seats at 400 different stores. This data is a data.frame created for the purpose of predicting sales volume.

str(Carseats)
#> 'data.frame':    400 obs. of  11 variables:
#>  $ Sales      : num  9.5 11.22 10.06 7.4 4.15 ...
#>  $ CompPrice  : num  138 111 113 117 141 124 115 136 132 132 ...
#>  $ Income     : num  73 48 35 100 64 113 105 81 110 113 ...
#>  $ Advertising: num  11 16 10 4 3 13 0 15 0 0 ...
#>  $ Population : num  276 260 269 466 340 501 45 425 108 131 ...
#>  $ Price      : num  120 83 80 97 128 72 108 120 124 124 ...
#>  $ ShelveLoc  : Factor w/ 3 levels "Bad","Good","Medium": 1 2 3 3 1 1 3 2 3 3 ...
#>  $ Age        : num  42 65 59 55 38 78 71 67 76 76 ...
#>  $ Education  : num  17 10 12 14 13 16 15 10 10 17 ...
#>  $ Urban      : Factor w/ 2 levels "No","Yes": 2 2 2 2 2 1 2 2 1 1 ...
#>  $ US         : Factor w/ 2 levels "No","Yes": 2 2 2 2 1 2 1 2 1 2 ...

The contents of individual variables are as follows. (Refer to ISLR::Carseats Man page)

When data analysis is performed, data containing missing values is frequently encountered. However, ‘Carseats’ is complete data without missing values. So the following script created the missing values and saved them as carseats.

carseats <- Carseats

suppressWarnings(RNGversion("3.5.0"))
set.seed(123)
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA

suppressWarnings(RNGversion("3.5.0"))
set.seed(456)
carseats[sample(seq(NROW(carseats)), 10), "Urban"] <- NA

Univariate data EDA

Calculating descriptive statistics using describe()

describe() computes descriptive statistics for numerical data. The descriptive statistics help determine the distribution of numerical variables. Like function of dplyr, the first argument is the tibble (or data frame). The second and subsequent arguments refer to variables within that data frame.

The variables of the tbl_df object returned by describe() are as follows.

For example, we can computes the statistics of all numerical variables in carseats:

describe(carseats)
#> # A tibble: 8 × 26
#>   described_variables     n    na   mean     sd se_mean    IQR skewness kurtosis
#>   <chr>               <int> <int>  <dbl>  <dbl>   <dbl>  <dbl>    <dbl>    <dbl>
#> 1 Sales                 400     0   7.50   2.82   0.141   3.93   0.186   -0.0809
#> 2 CompPrice             400     0 125.    15.3    0.767  20     -0.0428   0.0417
#> 3 Income                380    20  68.9   28.1    1.44   48.2    0.0449  -1.09  
#> 4 Advertising           400     0   6.64   6.65   0.333  12      0.640   -0.545 
#> 5 Population            400     0 265.   147.     7.37  260.    -0.0512  -1.20  
#> 6 Price                 400     0 116.    23.7    1.18   31     -0.125    0.452 
#> 7 Age                   400     0  53.3   16.2    0.810  26.2   -0.0772  -1.13  
#> 8 Education             400     0  13.9    2.62   0.131   4      0.0440  -1.30  
#> # ℹ 17 more variables: p00 <dbl>, p01 <dbl>, p05 <dbl>, p10 <dbl>, p20 <dbl>,
#> #   p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>, p60 <dbl>, p70 <dbl>,
#> #   p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>, p99 <dbl>, p100 <dbl>

The describe() function can be sorted by left or right skewed size(skewness) using dplyr.:

carseats %>%
  describe() %>%
  select(described_variables, skewness, mean, p25, p50, p75) %>% 
  filter(!is.na(skewness)) %>% 
  arrange(desc(abs(skewness)))
#> # A tibble: 8 × 6
#>   described_variables skewness   mean    p25    p50    p75
#>   <chr>                  <dbl>  <dbl>  <dbl>  <dbl>  <dbl>
#> 1 Advertising           0.640    6.64   0      5     12   
#> 2 Sales                 0.186    7.50   5.39   7.49   9.32
#> 3 Price                -0.125  116.   100    117    131   
#> 4 Age                  -0.0772  53.3   39.8   54.5   66   
#> 5 Population           -0.0512 265.   139    272    398.  
#> 6 Income                0.0449  68.9   42.8   69     91   
#> 7 Education             0.0440  13.9   12     14     16   
#> 8 CompPrice            -0.0428 125.   115    125    135

The describe() function supports the group_by() function syntax of the dplyr package.

carseats %>%
  group_by(US) %>% 
  describe(Sales, Income) 
#> # A tibble: 4 × 27
#>   described_variables US        n    na  mean    sd se_mean   IQR skewness
#>   <chr>               <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>
#> 1 Income              No      130    12 65.8  28.2    2.48  50      0.100 
#> 2 Income              Yes     250     8 70.4  27.9    1.77  48      0.0199
#> 3 Sales               No      142     0  6.82  2.60   0.218  3.44   0.323 
#> 4 Sales               Yes     258     0  7.87  2.88   0.179  4.23   0.0760
#> # ℹ 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
#> #   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#> #   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#> #   p99 <dbl>, p100 <dbl>
carseats %>%
  group_by(US, Urban) %>% 
  describe(Sales, Income) 
#> # A tibble: 12 × 28
#>    described_variables US    Urban     n    na  mean    sd se_mean    IQR
#>    <chr>               <fct> <fct> <int> <int> <dbl> <dbl>   <dbl>  <dbl>
#>  1 Income              No    No       42     4 60.2  29.1    4.49  45.2  
#>  2 Income              No    Yes      84     8 69.5  27.4    2.99  47    
#>  3 Income              No    <NA>      4     0 48.2  24.7   12.3   40.8  
#>  4 Income              Yes   No       65     4 70.5  29.9    3.70  48    
#>  5 Income              Yes   Yes     179     4 70.3  27.2    2.03  46.5  
#>  6 Income              Yes   <NA>      6     0 75.3  34.3   14.0   47.2  
#>  7 Sales               No    No       46     0  6.46  2.72   0.402  3.15 
#>  8 Sales               No    Yes      92     0  7.00  2.58   0.269  3.49 
#>  9 Sales               No    <NA>      4     0  6.99  1.28   0.639  0.827
#> 10 Sales               Yes   No       69     0  8.23  2.65   0.319  4.1  
#> 11 Sales               Yes   Yes     183     0  7.74  2.97   0.219  4.11 
#> 12 Sales               Yes   <NA>      6     0  7.61  2.61   1.06   3.25 
#> # ℹ 19 more variables: skewness <dbl>, kurtosis <dbl>, p00 <dbl>, p01 <dbl>,
#> #   p05 <dbl>, p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>,
#> #   p50 <dbl>, p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>,
#> #   p95 <dbl>, p99 <dbl>, p100 <dbl>
Test of normality on numeric variables using normality()

normality() performs a normality test on numerical data. Shapiro-Wilk normality test is performed. When the number of observations is greater than 5000, it is tested after extracting 5000 samples by random simple sampling.

The variables of tbl_df object returned by normality() are as follows.

normality() performs the normality test for all numerical variables of carseats as follows.:

normality(carseats)
#> # A tibble: 8 × 4
#>   vars        statistic  p_value sample
#>   <chr>           <dbl>    <dbl>  <dbl>
#> 1 Sales           0.995 2.54e- 1    400
#> 2 CompPrice       0.998 9.77e- 1    400
#> 3 Income          0.961 1.52e- 8    400
#> 4 Advertising     0.874 1.49e-17    400
#> 5 Population      0.952 4.08e-10    400
#> 6 Price           0.996 3.90e- 1    400
#> 7 Age             0.957 1.86e- 9    400
#> 8 Education       0.924 2.43e-13    400

You can use dplyr to sort variables that do not follow a normal distribution in order of p_value:

carseats %>%
  normality() %>%
  filter(p_value <= 0.01) %>% 
  arrange(abs(p_value))
#> # A tibble: 5 × 4
#>   vars        statistic  p_value sample
#>   <chr>           <dbl>    <dbl>  <dbl>
#> 1 Advertising     0.874 1.49e-17    400
#> 2 Education       0.924 2.43e-13    400
#> 3 Population      0.952 4.08e-10    400
#> 4 Age             0.957 1.86e- 9    400
#> 5 Income          0.961 1.52e- 8    400

In particular, the Advertising variable is considered to be the most out of the normal distribution.

The normality() function supports the group_by() function syntax in the dplyr package.

carseats %>%
  group_by(ShelveLoc, US) %>%
  normality(Income) %>% 
  arrange(desc(p_value))
#> # A tibble: 6 × 6
#>   variable ShelveLoc US    statistic  p_value sample
#>   <chr>    <fct>     <fct>     <dbl>    <dbl>  <dbl>
#> 1 Income   Bad       No        0.969 0.470        34
#> 2 Income   Bad       Yes       0.958 0.0343       62
#> 3 Income   Good      No        0.902 0.0328       24
#> 4 Income   Good      Yes       0.955 0.0296       61
#> 5 Income   Medium    No        0.947 0.00319      84
#> 6 Income   Medium    Yes       0.961 0.000948    135

The Income variable does not follow the normal distribution. However, the case where US is No and ShelveLoc is Good and Bad at the significance level of 0.01, it follows the normal distribution.

The following example performs normality test of log(Income) for each combination of ShelveLoc and US categorical variables to search for variables that follow the normal distribution.

carseats %>%
  mutate(log_income = log(Income)) %>%
  group_by(ShelveLoc, US) %>%
  normality(log_income) %>%
  filter(p_value > 0.01)
#> # A tibble: 1 × 6
#>   variable   ShelveLoc US    statistic p_value sample
#>   <chr>      <fct>     <fct>     <dbl>   <dbl>  <dbl>
#> 1 log_income Bad       No        0.940  0.0737     34

Visualization of normality of numerical variables using plot_normality()

plot_normality() visualizes the normality of numeric data.

The information that plot_normality() visualizes is as follows.

In the data analysis process, it often encounters numerical data that follows the power-law distribution. Since the numerical data that follows the power-law distribution is converted into a normal distribution by performing the log or sqrt transformation, so draw a histogram of the log and sqrt transformed data.

plot_normality() can also specify several variables like normality() function.

# Select columns by name
plot_normality(carseats, Sales, CompPrice)

The plot_normality() function also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(US) %>%
  plot_normality(Income)

EDA of bivariate data

Calculation of correlation coefficient using correlate()

correlate() calculates the correlation coefficient of all combinations of carseats numerical variables as follows:

correlate(carseats)
#> # A tibble: 56 × 3
#>    var1        var2      coef_corr
#>    <fct>       <fct>         <dbl>
#>  1 CompPrice   Sales        0.0641
#>  2 Income      Sales        0.151 
#>  3 Advertising Sales        0.270 
#>  4 Population  Sales        0.0505
#>  5 Price       Sales       -0.445 
#>  6 Age         Sales       -0.232 
#>  7 Education   Sales       -0.0520
#>  8 Sales       CompPrice    0.0641
#>  9 Income      CompPrice   -0.0761
#> 10 Advertising CompPrice   -0.0242
#> # ℹ 46 more rows

The following example performs a normality test only on combinations that include several selected variables.

# Select columns by name
correlate(carseats, Sales, CompPrice, Income)
#> # A tibble: 21 × 3
#>    var1      var2        coef_corr
#>    <fct>     <fct>           <dbl>
#>  1 CompPrice Sales          0.0641
#>  2 Income    Sales          0.151 
#>  3 Sales     CompPrice      0.0641
#>  4 Income    CompPrice     -0.0761
#>  5 Sales     Income         0.151 
#>  6 CompPrice Income        -0.0761
#>  7 Sales     Advertising    0.270 
#>  8 CompPrice Advertising   -0.0242
#>  9 Income    Advertising    0.0435
#> 10 Sales     Population     0.0505
#> # ℹ 11 more rows

correlate() produces two pairs of variables. So the following example uses filter() to get the correlation coefficient for a pair of variable combinations:

carseats %>%
  correlate(Sales:Income) %>%
  filter(as.integer(var1) > as.integer(var2))
#> # A tibble: 3 × 3
#>   var1      var2      coef_corr
#>   <fct>     <fct>         <dbl>
#> 1 CompPrice Sales        0.0641
#> 2 Income    Sales        0.151 
#> 3 Income    CompPrice   -0.0761

The correlate() also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(abs(coef_corr) > 0.5)
#> # A tibble: 10 × 5
#>    Urban US    var1  var2       coef_corr
#>    <fct> <fct> <fct> <fct>          <dbl>
#>  1 No    No    Sales Population    -0.530
#>  2 No    No    Sales Price         -0.838
#>  3 No    Yes   Sales Price         -0.630
#>  4 Yes   No    Sales Price         -0.833
#>  5 Yes   No    Sales Age           -0.649
#>  6 Yes   Yes   Sales Price         -0.619
#>  7 <NA>  Yes   Sales CompPrice      0.858
#>  8 <NA>  Yes   Sales Population    -0.806
#>  9 <NA>  Yes   Sales Price         -0.901
#> 10 <NA>  Yes   Sales Age           -0.984
Visualization of the correlation matrix using plot.correlate()

plot.correlate() visualizes the correlation matrix.

carseats %>% 
  correlate() %>%
  plot()

plot.correlate() can also specify multiple variables with correlate() function. The following is a visualization of the correlation matrix including several selected variables.

# Select columns by name
carseats %>% 
  correlate(Sales, Price) %>%
  plot()

The plot.correlate() function also supports the group_by() function syntax in the dplyr package.

carseats %>%
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>% 
  plot()

EDA based on target variable

Definition of target variable

To perform EDA based on target variable, you need to create a target_by class object. target_by() creates a target_by class with an object inheriting data.frame or data.frame. target_by() is similar to group_by() in dplyr which creates grouped_df. The difference is that you specify only one variable.

The following is an example of specifying US as target variable in carseats data.frame.:

categ <- target_by(carseats, US)
EDA when target variable is categorical variable

Let’s perform EDA when the target variable is a categorical variable. When the categorical variable US is the target variable, we examine the relationship between the target variable and the predictor.

Cases where predictors are numeric variable:

relate() shows the relationship between the target variable and the predictor. The following example shows the relationship between Sales and the target variable US. The predictor Sales is a numeric variable. In this case, the descriptive statistics are shown for each level of the target variable.

# If the variable of interest is a numerical variable
cat_num <- relate(categ, Sales)
cat_num
#> # A tibble: 3 × 27
#>   described_variables US        n    na  mean    sd se_mean   IQR skewness
#>   <chr>               <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>
#> 1 Sales               No      142     0  6.82  2.60   0.218  3.44   0.323 
#> 2 Sales               Yes     258     0  7.87  2.88   0.179  4.23   0.0760
#> 3 Sales               total   400     0  7.50  2.82   0.141  3.93   0.186 
#> # ℹ 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
#> #   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#> #   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#> #   p99 <dbl>, p100 <dbl>
summary(cat_num)
#>  described_variables     US          n               na         mean      
#>  Length:3            No   :1   Min.   :142.0   Min.   :0   Min.   :6.823  
#>  Class :character    Yes  :1   1st Qu.:200.0   1st Qu.:0   1st Qu.:7.160  
#>  Mode  :character    total:1   Median :258.0   Median :0   Median :7.496  
#>                                Mean   :266.7   Mean   :0   Mean   :7.395  
#>                                3rd Qu.:329.0   3rd Qu.:0   3rd Qu.:7.682  
#>                                Max.   :400.0   Max.   :0   Max.   :7.867  
#>        sd           se_mean            IQR           skewness      
#>  Min.   :2.603   Min.   :0.1412   Min.   :3.442   Min.   :0.07603  
#>  1st Qu.:2.713   1st Qu.:0.1602   1st Qu.:3.686   1st Qu.:0.13080  
#>  Median :2.824   Median :0.1791   Median :3.930   Median :0.18556  
#>  Mean   :2.768   Mean   :0.1796   Mean   :3.866   Mean   :0.19489  
#>  3rd Qu.:2.851   3rd Qu.:0.1988   3rd Qu.:4.077   3rd Qu.:0.25432  
#>  Max.   :2.877   Max.   :0.2184   Max.   :4.225   Max.   :0.32308  
#>     kurtosis             p00              p01              p05       
#>  Min.   :-0.32638   Min.   :0.0000   Min.   :0.4675   Min.   :3.147  
#>  1st Qu.:-0.20363   1st Qu.:0.0000   1st Qu.:0.6868   1st Qu.:3.148  
#>  Median :-0.08088   Median :0.0000   Median :0.9062   Median :3.149  
#>  Mean   : 0.13350   Mean   :0.1233   Mean   :1.0072   Mean   :3.183  
#>  3rd Qu.: 0.36344   3rd Qu.:0.1850   3rd Qu.:1.2771   3rd Qu.:3.200  
#>  Max.   : 0.80776   Max.   :0.3700   Max.   :1.6480   Max.   :3.252  
#>       p10             p20             p25             p30       
#>  Min.   :3.917   Min.   :4.754   Min.   :5.080   Min.   :5.306  
#>  1st Qu.:4.018   1st Qu.:4.910   1st Qu.:5.235   1st Qu.:5.587  
#>  Median :4.119   Median :5.066   Median :5.390   Median :5.867  
#>  Mean   :4.073   Mean   :5.051   Mean   :5.411   Mean   :5.775  
#>  3rd Qu.:4.152   3rd Qu.:5.199   3rd Qu.:5.576   3rd Qu.:6.010  
#>  Max.   :4.184   Max.   :5.332   Max.   :5.763   Max.   :6.153  
#>       p40             p50             p60             p70       
#>  Min.   :5.994   Min.   :6.660   Min.   :7.496   Min.   :7.957  
#>  1st Qu.:6.301   1st Qu.:7.075   1st Qu.:7.787   1st Qu.:8.386  
#>  Median :6.608   Median :7.490   Median :8.078   Median :8.815  
#>  Mean   :6.506   Mean   :7.313   Mean   :8.076   Mean   :8.740  
#>  3rd Qu.:6.762   3rd Qu.:7.640   3rd Qu.:8.366   3rd Qu.:9.132  
#>  Max.   :6.916   Max.   :7.790   Max.   :8.654   Max.   :9.449  
#>       p75             p80              p90              p95       
#>  Min.   :8.523   Min.   : 8.772   Min.   : 9.349   Min.   :11.28  
#>  1st Qu.:8.921   1st Qu.: 9.265   1st Qu.:10.325   1st Qu.:11.86  
#>  Median :9.320   Median : 9.758   Median :11.300   Median :12.44  
#>  Mean   :9.277   Mean   : 9.665   Mean   :10.795   Mean   :12.08  
#>  3rd Qu.:9.654   3rd Qu.:10.111   3rd Qu.:11.518   3rd Qu.:12.49  
#>  Max.   :9.988   Max.   :10.464   Max.   :11.736   Max.   :12.54  
#>       p99             p100      
#>  Min.   :13.64   Min.   :14.90  
#>  1st Qu.:13.78   1st Qu.:15.59  
#>  Median :13.91   Median :16.27  
#>  Mean   :13.86   Mean   :15.81  
#>  3rd Qu.:13.97   3rd Qu.:16.27  
#>  Max.   :14.03   Max.   :16.27

plot() visualizes the relate class object created by relate() as the relationship between the target variable and the predictor variable. The relationship between US and Sales is visualized by density plot.

plot(cat_num)

Cases where predictors are categorical variable:

The following example shows the relationship between ShelveLoc and the target variable US. The predictor variable ShelveLoc is a categorical variable. In this case, it shows the contingency table of two variables. The summary() function performs independence test on the contingency table.

# If the variable of interest is a categorical variable
cat_cat <- relate(categ, ShelveLoc)
cat_cat
#>      ShelveLoc
#> US    Bad Good Medium
#>   No   34   24     84
#>   Yes  62   61    135
summary(cat_cat)
#> Call: xtabs(formula = formula_str, data = data, addNA = TRUE)
#> Number of cases in table: 400 
#> Number of factors: 2 
#> Test for independence of all factors:
#>  Chisq = 2.7397, df = 2, p-value = 0.2541

plot() visualizes the relationship between the target variable and the predictor. The relationship between US and ShelveLoc is represented by a mosaics plot.

plot(cat_cat)

EDA when target variable is numerical variable

Let’s perform EDA when the target variable is numeric. When the numeric variable Sales is the target variable, we examine the relationship between the target variable and the predictor.

# If the variable of interest is a numerical variable
num <- target_by(carseats, Sales)

Cases where predictors are numeric variable:

The following example shows the relationship between Price and the target variable Sales. The predictor variable Price is a numeric variable. In this case, it shows the result of a simple linear model of the target ~ predictor formula. The summary() function expresses the details of the model.

# If the variable of interest is a numerical variable
num_num <- relate(num, Price)
num_num
#> 
#> Call:
#> lm(formula = formula_str, data = data)
#> 
#> Coefficients:
#> (Intercept)        Price  
#>    13.64192     -0.05307
summary(num_num)
#> 
#> Call:
#> lm(formula = formula_str, data = data)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -6.5224 -1.8442 -0.1459  1.6503  7.5108 
#> 
#> Coefficients:
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) 13.641915   0.632812  21.558   <2e-16 ***
#> Price       -0.053073   0.005354  -9.912   <2e-16 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 2.532 on 398 degrees of freedom
#> Multiple R-squared:  0.198,  Adjusted R-squared:  0.196 
#> F-statistic: 98.25 on 1 and 398 DF,  p-value: < 2.2e-16

plot() visualizes the relationship between the target and predictor variables. The relationship between Sales and Price is visualized with a scatter plot. The figure on the left shows the scatter plot of Sales and Price and the confidence interval of the regression line and regression line. The figure on the right shows the relationship between the original data and the predicted values of the linear model as a scatter plot. If there is a linear relationship between the two variables, the scatter plot of the observations converges on the red diagonal line.

plot(num_num)

Cases where predictors are categorical variable:

The following example shows the relationship between ShelveLoc and the target variable Sales. The predictor ShelveLoc is a categorical variable and shows the result of one-way ANOVA of target ~ predictor relationship. The results are expressed in terms of ANOVA. The summary() function shows the regression coefficients for each level of the predictor. In other words, it shows detailed information about simple regression analysis of target ~ predictor relationship.

# If the variable of interest is a categorical variable
num_cat <- relate(num, ShelveLoc)
num_cat
#> Analysis of Variance Table
#> 
#> Response: Sales
#>            Df Sum Sq Mean Sq F value    Pr(>F)    
#> ShelveLoc   2 1009.5  504.77   92.23 < 2.2e-16 ***
#> Residuals 397 2172.7    5.47                      
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(num_cat)
#> 
#> Call:
#> lm(formula = formula(formula_str), data = data)
#> 
#> Residuals:
#>     Min      1Q  Median      3Q     Max 
#> -7.3066 -1.6282 -0.0416  1.5666  6.1471 
#> 
#> Coefficients:
#>                 Estimate Std. Error t value Pr(>|t|)    
#> (Intercept)       5.5229     0.2388  23.131  < 2e-16 ***
#> ShelveLocGood     4.6911     0.3484  13.464  < 2e-16 ***
#> ShelveLocMedium   1.7837     0.2864   6.229  1.2e-09 ***
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> Residual standard error: 2.339 on 397 degrees of freedom
#> Multiple R-squared:  0.3172, Adjusted R-squared:  0.3138 
#> F-statistic: 92.23 on 2 and 397 DF,  p-value: < 2.2e-16

plot() visualizes the relationship between the target variable and the predictor. The relationship between Sales and ShelveLoc is represented by a box plot.

plot(num_cat)

Data Transformation

dlookr imputes missing values and outliers and resolves skewed data. It also provides the ability to bin continuous variables as categorical variables.

Here is a list of the data conversion functions and functions provided by dlookr:

Imputation of missing values

imputes the missing value with imputate_na()

imputate_na() imputes the missing value contained in the variable. The predictor with missing values support both numeric and categorical variables, and supports the following method.

In the following example, imputate_na() imputes the missing value of Income, a numeric variable of carseats, using the “rpart” method. summary() summarizes missing value imputation information, and plot() visualizes missing information.

income <- imputate_na(carseats, Income, US, method = "rpart")

# result of imputation
income
#>   [1]  73.00000  48.00000  35.00000 100.00000  64.00000 113.00000 105.00000
#>   [8]  81.00000 110.00000 113.00000  78.00000  94.00000  35.00000  28.00000
#>  [15] 117.00000  95.00000  76.75000  68.70968 110.00000  76.00000  90.00000
#>  [22]  29.00000  46.00000  31.00000 119.00000  32.00000 115.00000 118.00000
#>  [29]  74.00000  99.00000  94.00000  58.00000  32.00000  38.00000  54.00000
#>  [36]  84.00000  76.00000  41.00000  73.00000  69.27778  98.00000  53.00000
#>  [43]  69.00000  42.00000  79.00000  63.00000  90.00000  98.00000  52.00000
#>  [50]  93.00000  32.00000  90.00000  40.00000  64.00000 103.00000  81.00000
#>  [57]  82.00000  91.00000  93.00000  71.00000 102.00000  32.00000  45.00000
#>  [64]  88.00000  67.00000  26.00000  92.00000  61.00000  69.00000  59.00000
#>  [71]  81.00000  51.00000  45.00000  90.00000  68.00000 111.00000  87.00000
#>  [78]  71.00000  48.00000  67.00000 100.00000  72.00000  83.00000  36.00000
#>  [85]  25.00000 103.00000  84.00000  67.00000  42.00000  66.00000  22.00000
#>  [92]  46.00000 113.00000  30.00000  88.93750  25.00000  42.00000  82.00000
#>  [99]  77.00000  47.00000  69.00000  93.00000  22.00000  91.00000  96.00000
#> [106] 100.00000  33.00000 107.00000  79.00000  65.00000  62.00000 118.00000
#> [113]  99.00000  29.00000  87.00000  68.70968  75.00000  53.00000  88.00000
#> [120]  94.00000 105.00000  89.00000 100.00000 103.00000 113.00000  98.33333
#> [127]  68.00000  48.00000 100.00000 120.00000  84.00000  69.00000  87.00000
#> [134]  98.00000  31.00000  94.00000  75.00000  42.00000 103.00000  62.00000
#> [141]  60.00000  42.00000  84.00000  88.00000  68.00000  63.00000  83.00000
#> [148]  54.00000 119.00000 120.00000  84.00000  58.00000  78.00000  36.00000
#> [155]  69.00000  72.00000  34.00000  58.00000  90.00000  60.00000  28.00000
#> [162]  21.00000  83.53846  64.00000  64.00000  58.00000  67.00000  73.00000
#> [169]  89.00000  41.00000  39.00000 106.00000 102.00000  91.00000  24.00000
#> [176]  89.00000  69.27778  72.00000  85.00000  25.00000 112.00000  83.00000
#> [183]  60.00000  74.00000  33.00000 100.00000  51.00000  32.00000  37.00000
#> [190] 117.00000  37.00000  42.00000  26.00000  70.00000  98.00000  93.00000
#> [197]  28.00000  61.00000  80.00000  88.00000  92.00000  83.00000  78.00000
#> [204]  82.00000  80.00000  22.00000  67.00000 105.00000  98.33333  21.00000
#> [211]  41.00000 118.00000  69.00000  84.00000 115.00000  83.00000  43.75000
#> [218]  44.00000  61.00000  79.00000 120.00000  73.47368 119.00000  45.00000
#> [225]  82.00000  25.00000  33.00000  64.00000  73.00000 104.00000  60.00000
#> [232]  69.00000  80.00000  76.00000  62.00000  32.00000  34.00000  28.00000
#> [239]  24.00000 105.00000  80.00000  63.00000  46.00000  25.00000  30.00000
#> [246]  43.00000  56.00000 114.00000  52.00000  67.00000 105.00000 111.00000
#> [253]  97.00000  24.00000 104.00000  81.00000  40.00000  62.00000  38.00000
#> [260]  36.00000 117.00000  42.00000  73.47368  26.00000  29.00000  35.00000
#> [267]  93.00000  82.00000  57.00000  69.00000  26.00000  56.00000  33.00000
#> [274] 106.00000  93.00000 119.00000  69.00000  48.00000 113.00000  57.00000
#> [281]  86.00000  69.00000  96.00000 110.00000  46.00000  26.00000 118.00000
#> [288]  44.00000  40.00000  77.00000 111.00000  70.00000  66.00000  84.00000
#> [295]  76.00000  35.00000  44.00000  83.00000  63.00000  40.00000  78.00000
#> [302]  93.00000  77.00000  52.00000  98.00000  29.00000  32.00000  92.00000
#> [309]  80.00000 111.00000  65.00000  68.00000 117.00000  81.00000  56.57895
#> [316]  21.00000  36.00000  30.00000  72.00000  45.00000  70.00000  39.00000
#> [323]  50.00000 105.00000  65.00000  69.00000  30.00000  38.00000  66.00000
#> [330]  54.00000  59.00000  63.00000  33.00000  60.00000 117.00000  70.00000
#> [337]  35.00000  38.00000  24.00000  44.00000  29.00000 120.00000 102.00000
#> [344]  42.00000  80.00000  68.00000  76.75000  39.00000 102.00000  27.00000
#> [351]  51.83333 115.00000 103.00000  67.00000  31.00000 100.00000 109.00000
#> [358]  73.00000  96.00000  62.00000  86.00000  25.00000  55.00000  51.83333
#> [365]  21.00000  30.00000  56.00000 106.00000  22.00000 100.00000  41.00000
#> [372]  81.00000  68.66667  68.88889  47.00000  46.00000  60.00000  61.00000
#> [379]  88.00000 111.00000  64.00000  65.00000  28.00000 117.00000  37.00000
#> [386]  73.00000 116.00000  73.00000  89.00000  42.00000  75.00000  63.00000
#> [393]  42.00000  51.00000  58.00000 108.00000  81.17647  26.00000  79.00000
#> [400]  37.00000
#> attr(,"var_type")
#> [1] "numerical"
#> attr(,"method")
#> [1] "rpart"
#> attr(,"na_pos")
#>  [1]  17  18  40  95 116 126 163 177 179 209 217 222 263 315 347 351 364 373 374
#> [20] 397
#> attr(,"type")
#> [1] "missing values"
#> attr(,"message")
#> [1] "complete imputation"
#> attr(,"success")
#> [1] TRUE
#> attr(,"class")
#> [1] "imputation" "numeric"

# summary of imputation
summary(income)
#> * Impute missing values based on Recursive Partitioning and Regression Trees
#>  - method : rpart
#> 
#> * Information of Imputation (before vs after)
#>                     Original     Imputation  
#> described_variables "value"      "value"     
#> n                   "380"        "400"       
#> na                  "20"         " 0"        
#> mean                "68.86053"   "69.05073"  
#> sd                  "28.09161"   "27.57382"  
#> se_mean             "1.441069"   "1.378691"  
#> IQR                 "48.25"      "46.00"     
#> skewness            "0.04490600" "0.02935732"
#> kurtosis            "-1.089201"  "-1.035086" 
#> p00                 "21"         "21"        
#> p01                 "21.79"      "21.99"     
#> p05                 "26"         "26"        
#> p10                 "30.0"       "30.9"      
#> p20                 "39"         "40"        
#> p25                 "42.75"      "44.00"     
#> p30                 "48.00000"   "51.58333"  
#> p40                 "62"         "63"        
#> p50                 "69"         "69"        
#> p60                 "78.0"       "77.4"      
#> p70                 "86.3"       "84.3"      
#> p75                 "91"         "90"        
#> p80                 "96.2"       "96.0"      
#> p90                 "108.1"      "106.1"     
#> p95                 "115.05"     "115.00"    
#> p99                 "119.21"     "119.01"    
#> p100                "120"        "120"

# viz of imputation
plot(income)

The following imputes the categorical variable urban by the “mice” method.

library(mice)
#> 
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#> 
#>     filter
#> The following objects are masked from 'package:base':
#> 
#>     cbind, rbind

urban <- imputate_na(carseats, Urban, US, method = "mice", print_flag = FALSE)

# result of imputation
urban
#>   [1] Yes Yes Yes Yes Yes No  Yes Yes No  No  No  Yes Yes Yes Yes No  Yes Yes
#>  [19] No  Yes Yes No  Yes Yes Yes No  No  Yes Yes Yes Yes Yes Yes Yes Yes Yes
#>  [37] No  Yes Yes No  No  Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes Yes Yes
#>  [55] No  Yes Yes Yes Yes Yes Yes No  Yes Yes No  No  Yes Yes Yes Yes Yes No 
#>  [73] Yes No  No  No  Yes No  Yes Yes Yes Yes Yes Yes No  No  Yes No  Yes No 
#>  [91] No  Yes Yes Yes Yes Yes No  Yes No  No  No  Yes No  Yes Yes Yes No  Yes
#> [109] Yes No  Yes Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes Yes No  Yes No 
#> [127] Yes Yes Yes No  Yes Yes Yes Yes Yes No  No  Yes Yes No  Yes Yes Yes Yes
#> [145] No  Yes Yes No  No  Yes Yes No  No  No  No  Yes Yes No  No  No  No  No 
#> [163] Yes No  No  Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Yes No  Yes No  Yes
#> [181] Yes Yes Yes Yes No  Yes No  Yes Yes No  No  Yes No  Yes Yes Yes Yes Yes
#> [199] Yes Yes No  Yes No  Yes Yes Yes Yes No  Yes No  No  Yes Yes Yes Yes Yes
#> [217] Yes No  Yes Yes Yes Yes Yes Yes No  Yes Yes Yes No  No  No  No  Yes No 
#> [235] No  Yes Yes Yes Yes Yes Yes Yes No  Yes Yes No  Yes Yes Yes Yes Yes Yes
#> [253] Yes No  Yes Yes Yes Yes No  No  Yes Yes Yes Yes Yes Yes No  No  Yes Yes
#> [271] Yes Yes Yes Yes Yes Yes Yes Yes No  Yes Yes No  Yes No  No  Yes No  Yes
#> [289] No  Yes No  No  Yes Yes Yes No  Yes Yes Yes No  Yes Yes Yes Yes Yes Yes
#> [307] Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No  No  No  Yes Yes Yes Yes
#> [325] Yes Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes Yes Yes No  Yes Yes No 
#> [343] No  Yes No  Yes No  No  Yes No  No  No  Yes No  Yes Yes Yes Yes Yes Yes
#> [361] No  No  Yes Yes Yes No  No  Yes No  Yes Yes Yes No  Yes Yes Yes Yes No 
#> [379] Yes Yes Yes Yes Yes Yes Yes Yes Yes No  Yes Yes Yes Yes Yes No  Yes Yes
#> [397] No  Yes Yes Yes
#> attr(,"var_type")
#> [1] categorical
#> attr(,"method")
#> [1] mice
#> attr(,"na_pos")
#>  [1]  33  36  84  94 113 132 151 292 313 339
#> attr(,"seed")
#> [1] 67257
#> attr(,"type")
#> [1] missing values
#> attr(,"message")
#> [1] complete imputation
#> attr(,"success")
#> [1] TRUE
#> Levels: No Yes

# summary of imputation
summary(urban)
#> * Impute missing values based on Multivariate Imputation by Chained Equations
#>  - method : mice
#>  - random seed : 67257
#> 
#> * Information of Imputation (before vs after)
#>      original imputation original_percent imputation_percent
#> No        115        117            28.75              29.25
#> Yes       275        283            68.75              70.75
#> <NA>       10          0             2.50               0.00

# viz of imputation
plot(urban)

Collaboration with dplyr

The following example imputes the missing value of the Income variable, and then calculates the arithmetic mean for each level of US. In this case, dplyr is used, and it is easily interpreted logically using pipes.

# The mean before and after the imputation of the Income variable
carseats %>%
  mutate(Income_imp = imputate_na(carseats, Income, US, method = "knn")) %>%
  group_by(US) %>%
  summarise(orig = mean(Income, na.rm = TRUE),
    imputation = mean(Income_imp))
#> # A tibble: 2 × 3
#>   US     orig imputation
#>   <fct> <dbl>      <dbl>
#> 1 No     65.8       66.1
#> 2 Yes    70.4       70.5

Imputation of outliers

imputes thr outliers with imputate_outlier()

imputate_outlier() imputes the outliers value. The predictor with outliers supports only numeric variables and supports the following methods.

imputate_outlier() imputes the outliers with the numeric variable Price as the “capping” method, as follows. summary() summarizes outliers imputation information, and plot() visualizes imputation information.

price <- imputate_outlier(carseats, Price, method = "capping")

# result of imputation
price
#>   [1] 120.00  83.00  80.00  97.00 128.00  72.00 108.00 120.00 124.00 124.00
#>  [11] 100.00  94.00 136.00  86.00 118.00 144.00 110.00 131.00  68.00 121.00
#>  [21] 131.00 109.00 138.00 109.00 113.00  82.00 131.00 107.00  97.00 102.00
#>  [31]  89.00 131.00 137.00 128.00 128.00  96.00 100.00 110.00 102.00 138.00
#>  [41] 126.00 124.00  77.00 134.00  95.00 135.00  70.00 108.00  98.00 149.00
#>  [51] 108.00 108.00 129.00 119.00 144.00 154.00  84.00 117.00 103.00 114.00
#>  [61] 123.00 107.00 133.00 101.00 104.00 128.00  91.00 115.00 134.00  99.00
#>  [71]  99.00 150.00 116.00 104.00 136.00  92.00  70.00  89.00 145.00  90.00
#>  [81]  79.00 128.00 139.00  94.00 121.00 112.00 134.00 126.00 111.00 119.00
#>  [91] 103.00 107.00 125.00 104.00  84.00 148.00 132.00 129.00 127.00 107.00
#> [101] 106.00 118.00  97.00  96.00 138.00  97.00 139.00 108.00 103.00  90.00
#> [111] 116.00 151.00 125.00 127.00 106.00 129.00 128.00 119.00  99.00 128.00
#> [121] 131.00  87.00 108.00 155.00 120.00  77.00 133.00 116.00 126.00 147.00
#> [131]  77.00  94.00 136.00  97.00 131.00 120.00 120.00 118.00 109.00  94.00
#> [141] 129.00 131.00 104.00 159.00 123.00 117.00 131.00 119.00  97.00  87.00
#> [151] 114.00 103.00 128.00 150.00 110.00  69.00 157.00  90.00 112.00  70.00
#> [161] 111.00 160.00 149.00 106.00 141.00 155.05 137.00  93.00 117.00  77.00
#> [171] 118.00  55.00 110.00 128.00 155.05 122.00 154.00  94.00  81.00 116.00
#> [181] 149.00  91.00 140.00 102.00  97.00 107.00  86.00  96.00  90.00 104.00
#> [191] 101.00 173.00  93.00  96.00 128.00 112.00 133.00 138.00 128.00 126.00
#> [201] 146.00 134.00 130.00 157.00 124.00 132.00 160.00  97.00  64.00  90.00
#> [211] 123.00 120.00 105.00 139.00 107.00 144.00 144.00 111.00 120.00 116.00
#> [221] 124.00 107.00 145.00 125.00 141.00  82.00 122.00 101.00 163.00  72.00
#> [231] 114.00 122.00 105.00 120.00 129.00 132.00 108.00 135.00 133.00 118.00
#> [241] 121.00  94.00 135.00 110.00 100.00  88.00  90.00 151.00 101.00 117.00
#> [251] 156.00 132.00 117.00 122.00 129.00  81.00 144.00 112.00  81.00 100.00
#> [261] 101.00 118.00 132.00 115.00 159.00 129.00 112.00 112.00 105.00 166.00
#> [271]  89.00 110.00  63.00  86.00 119.00 132.00 130.00 125.00 151.00 158.00
#> [281] 145.00 105.00 154.00 117.00  96.00 131.00 113.00  72.00  97.00 156.00
#> [291] 103.00  89.00  74.00  89.00  99.00 137.00 123.00 104.00 130.00  96.00
#> [301]  99.00  87.00 110.00  99.00 134.00 132.00 133.00 120.00 126.00  80.00
#> [311] 166.00 132.00 135.00  54.00 129.00 171.00  72.00 136.00 130.00 129.00
#> [321] 152.00  98.00 139.00 103.00 150.00 104.00 122.00 104.00 111.00  89.00
#> [331] 112.00 134.00 104.00 147.00  83.00 110.00 143.00 102.00 101.00 126.00
#> [341]  91.00  93.00 118.00 121.00 126.00 149.00 125.00 112.00 107.00  96.00
#> [351]  91.00 105.00 122.00  92.00 145.00 146.00 164.00  72.00 118.00 130.00
#> [361] 114.00 104.00 110.00 108.00 131.00 162.00 134.00  77.00  79.00 122.00
#> [371] 119.00 126.00  98.00 116.00 118.00 124.00  92.00 125.00 119.00 107.00
#> [381]  89.00 151.00 121.00  68.00 112.00 132.00 160.00 115.00  78.00 107.00
#> [391] 111.00 124.00 130.00 120.00 139.00 128.00 120.00 159.00  95.00 120.00
#> attr(,"method")
#> [1] "capping"
#> attr(,"var_type")
#> [1] "numerical"
#> attr(,"outlier_pos")
#> [1]  43 126 166 175 368
#> attr(,"outliers")
#> [1]  24  49 191 185  53
#> attr(,"type")
#> [1] "outliers"
#> attr(,"message")
#> [1] "complete imputation"
#> attr(,"success")
#> [1] TRUE
#> attr(,"class")
#> [1] "imputation" "numeric"

# summary of imputation
summary(price)
#> Impute outliers with capping
#> 
#> * Information of Imputation (before vs after)
#>                     Original     Imputation  
#> described_variables "value"      "value"     
#> n                   "400"        "400"       
#> na                  "0"          "0"         
#> mean                "115.7950"   "115.8927"  
#> sd                  "23.67666"   "22.61092"  
#> se_mean             "1.183833"   "1.130546"  
#> IQR                 "31"         "31"        
#> skewness            "-0.1252862" "-0.0461621"
#> kurtosis            " 0.4518850" "-0.3030578"
#> p00                 "24"         "54"        
#> p01                 "54.99"      "67.96"     
#> p05                 "77"         "77"        
#> p10                 "87"         "87"        
#> p20                 "96.8"       "96.8"      
#> p25                 "100"        "100"       
#> p30                 "104"        "104"       
#> p40                 "110"        "110"       
#> p50                 "117"        "117"       
#> p60                 "122"        "122"       
#> p70                 "128.3"      "128.3"     
#> p75                 "131"        "131"       
#> p80                 "134"        "134"       
#> p90                 "146"        "146"       
#> p95                 "155.0500"   "155.0025"  
#> p99                 "166.05"     "164.02"    
#> p100                "191"        "173"

# viz of imputation
plot(price)

Collaboration with dplyr

The following example imputes the outliers of the Price variable, and then calculates the arithmetic mean for each level of US. In this case, dplyr is used, and it is easily interpreted logically using pipes.

# The mean before and after the imputation of the Price variable
carseats %>%
  mutate(Price_imp = imputate_outlier(carseats, Price, method = "capping")) %>%
  group_by(US) %>%
  summarise(orig = mean(Price, na.rm = TRUE),
    imputation = mean(Price_imp, na.rm = TRUE))
#> # A tibble: 2 × 3
#>   US     orig imputation
#>   <fct> <dbl>      <dbl>
#> 1 No     114.       114.
#> 2 Yes    117.       117.

Standardization and Resolving Skewness

Introduction to the use of transform()

transform() performs data transformation. Only numeric variables are supported, and the following methods are provided.

Standardization with transform()

Use the methods “zscore” and “minmax” to perform standardization.

carseats %>% 
  mutate(Income_minmax = transform(carseats$Income, method = "minmax"),
    Sales_minmax = transform(carseats$Sales, method = "minmax")) %>% 
  select(Income_minmax, Sales_minmax) %>% 
  boxplot()

Resolving Skewness data with transform()

find_skewness() searches for variables with skewed data. This function finds data skewed by search conditions and calculates skewness.

# find index of skewed variables
find_skewness(carseats)
#> [1] 4

# find names of skewed variables
find_skewness(carseats, index = FALSE)
#> [1] "Advertising"

# compute the skewness
find_skewness(carseats, value = TRUE)
#>       Sales   CompPrice      Income Advertising  Population       Price 
#>       0.185      -0.043       0.045       0.637      -0.051      -0.125 
#>         Age   Education 
#>      -0.077       0.044

# compute the skewness & filtering with threshold
find_skewness(carseats, value = TRUE, thres = 0.1)
#>       Sales Advertising       Price 
#>       0.185       0.637      -0.125

The skewness of Advertising is 0.637. This means that the distribution of data is somewhat inclined to the left. So, for normal distribution, use transform() to convert to “log” method as follows. summary() summarizes transformation information, and plot() visualizes transformation information.

Advertising_log = transform(carseats$Advertising, method = "log")

# result of transformation
head(Advertising_log)
#> [1] 2.397895 2.772589 2.302585 1.386294 1.098612 2.564949
# summary of transformation
summary(Advertising_log)
#> * Resolving Skewness with log
#> 
#> * Information of Transformation (before vs after)
#>             Original Transformation
#> n        400.0000000    400.0000000
#> na         0.0000000      0.0000000
#> mean       6.6350000           -Inf
#> sd         6.6503642            NaN
#> se_mean    0.3325182            NaN
#> IQR       12.0000000            Inf
#> skewness   0.6395858            NaN
#> kurtosis  -0.5451178            NaN
#> p00        0.0000000           -Inf
#> p01        0.0000000           -Inf
#> p05        0.0000000           -Inf
#> p10        0.0000000           -Inf
#> p20        0.0000000           -Inf
#> p25        0.0000000           -Inf
#> p30        0.0000000           -Inf
#> p40        2.0000000      0.6931472
#> p50        5.0000000      1.6094379
#> p60        8.4000000      2.1265548
#> p70       11.0000000      2.3978953
#> p75       12.0000000      2.4849066
#> p80       13.0000000      2.5649494
#> p90       16.0000000      2.7725887
#> p95       19.0000000      2.9444390
#> p99       23.0100000      3.1359198
#> p100      29.0000000      3.3672958
# viz of transformation
plot(Advertising_log)

It seems that the raw data contains 0, as there is a -Inf in the log converted value. So this time, convert it to “log+1”.

Advertising_log <- transform(carseats$Advertising, method = "log+1")

# result of transformation
head(Advertising_log)
#> [1] 2.484907 2.833213 2.397895 1.609438 1.386294 2.639057
# summary of transformation
summary(Advertising_log)
#> * Resolving Skewness with log+1
#> 
#> * Information of Transformation (before vs after)
#>             Original Transformation
#> n        400.0000000   400.00000000
#> na         0.0000000     0.00000000
#> mean       6.6350000     1.46247709
#> sd         6.6503642     1.19436323
#> se_mean    0.3325182     0.05971816
#> IQR       12.0000000     2.56494936
#> skewness   0.6395858    -0.19852549
#> kurtosis  -0.5451178    -1.66342876
#> p00        0.0000000     0.00000000
#> p01        0.0000000     0.00000000
#> p05        0.0000000     0.00000000
#> p10        0.0000000     0.00000000
#> p20        0.0000000     0.00000000
#> p25        0.0000000     0.00000000
#> p30        0.0000000     0.00000000
#> p40        2.0000000     1.09861229
#> p50        5.0000000     1.79175947
#> p60        8.4000000     2.23936878
#> p70       11.0000000     2.48490665
#> p75       12.0000000     2.56494936
#> p80       13.0000000     2.63905733
#> p90       16.0000000     2.83321334
#> p95       19.0000000     2.99573227
#> p99       23.0100000     3.17846205
#> p100      29.0000000     3.40119738
# viz of transformation
plot(Advertising_log)

Binning

Binning of individual variables using binning()

binning() transforms a numeric variable into a categorical variable by binning it. The following types of binning are supported.

Here are some examples of how to bin Income using binning().:

# Binning the carat variable. default type argument is "quantile"
bin <- binning(carseats$Income)
# Print bins class object
bin
#> binned type: quantile
#> number of bins: 10
#> x
#>         [21,30]         (30,39]         (39,48]         (48,62]         (62,69] 
#>              40              37              38              40              42 
#>         (69,78]   (78,86.56667] (86.56667,96.6] (96.6,108.6333]  (108.6333,120] 
#>              33              36              38              38              38 
#>            <NA> 
#>              20
# Summarize bins class object
summary(bin)
#>             levels freq   rate
#> 1          [21,30]   40 0.1000
#> 2          (30,39]   37 0.0925
#> 3          (39,48]   38 0.0950
#> 4          (48,62]   40 0.1000
#> 5          (62,69]   42 0.1050
#> 6          (69,78]   33 0.0825
#> 7    (78,86.56667]   36 0.0900
#> 8  (86.56667,96.6]   38 0.0950
#> 9  (96.6,108.6333]   38 0.0950
#> 10  (108.6333,120]   38 0.0950
#> 11            <NA>   20 0.0500
# Plot bins class object
plot(bin)

# Using labels argument
bin <- binning(carseats$Income, nbins = 4,
              labels = c("LQ1", "UQ1", "LQ3", "UQ3"))
bin
#> binned type: quantile
#> number of bins: 4
#> x
#>  LQ1  UQ1  LQ3  UQ3 <NA> 
#>   95  102   89   94   20
# Using another type argument
binning(carseats$Income, nbins = 5, type = "equal")
#> binned type: equal
#> number of bins: 5
#> x
#>    [21,40.8]  (40.8,60.6]  (60.6,80.4] (80.4,100.2]  (100.2,120]         <NA> 
#>           81           65           94           80           60           20
binning(carseats$Income, nbins = 5, type = "pretty")
#> binned type: pretty
#> number of bins: 5
#> x
#>   [20,40]   (40,60]   (60,80]  (80,100] (100,120]      <NA> 
#>        81        65        94        80        60        20
binning(carseats$Income, nbins = 5, type = "kmeans")
#> binned type: kmeans
#> number of bins: 5
#> x
#>   [21,46.5] (46.5,67.5]   (67.5,85]  (85,102.5] (102.5,120]        <NA> 
#>         109          72          83          60          56          20
binning(carseats$Income, nbins = 5, type = "bclust")
#> binned type: bclust
#> number of bins: 5
#> x
#>      [21,49]    (49,77.5]  (77.5,95.5] (95.5,108.5]  (108.5,120]         <NA> 
#>          115          111           75           41           38           20

# Extract the binned results
extract(bin)
#>   [1] LQ3  UQ1  LQ1  UQ3  UQ1  UQ3  UQ3  LQ3  UQ3  UQ3  LQ3  UQ3  LQ1  LQ1  UQ3 
#>  [16] UQ3  <NA> <NA> UQ3  LQ3  LQ3  LQ1  UQ1  LQ1  UQ3  LQ1  UQ3  UQ3  LQ3  UQ3 
#>  [31] UQ3  UQ1  LQ1  LQ1  UQ1  LQ3  LQ3  LQ1  LQ3  <NA> UQ3  UQ1  UQ1  LQ1  LQ3 
#>  [46] UQ1  LQ3  UQ3  UQ1  UQ3  LQ1  LQ3  LQ1  UQ1  UQ3  LQ3  LQ3  LQ3  UQ3  LQ3 
#>  [61] UQ3  LQ1  UQ1  LQ3  UQ1  LQ1  UQ3  UQ1  UQ1  UQ1  LQ3  UQ1  UQ1  LQ3  UQ1 
#>  [76] UQ3  LQ3  LQ3  UQ1  UQ1  UQ3  LQ3  LQ3  LQ1  LQ1  UQ3  LQ3  UQ1  LQ1  UQ1 
#>  [91] LQ1  UQ1  UQ3  LQ1  <NA> LQ1  LQ1  LQ3  LQ3  UQ1  UQ1  UQ3  LQ1  LQ3  UQ3 
#> [106] UQ3  LQ1  UQ3  LQ3  UQ1  UQ1  UQ3  UQ3  LQ1  LQ3  <NA> LQ3  UQ1  LQ3  UQ3 
#> [121] UQ3  LQ3  UQ3  UQ3  UQ3  <NA> UQ1  UQ1  UQ3  UQ3  LQ3  UQ1  LQ3  UQ3  LQ1 
#> [136] UQ3  LQ3  LQ1  UQ3  UQ1  UQ1  LQ1  LQ3  LQ3  UQ1  UQ1  LQ3  UQ1  UQ3  UQ3 
#> [151] LQ3  UQ1  LQ3  LQ1  UQ1  LQ3  LQ1  UQ1  LQ3  UQ1  LQ1  LQ1  <NA> UQ1  UQ1 
#> [166] UQ1  UQ1  LQ3  LQ3  LQ1  LQ1  UQ3  UQ3  LQ3  LQ1  LQ3  <NA> LQ3  <NA> LQ1 
#> [181] UQ3  LQ3  UQ1  LQ3  LQ1  UQ3  UQ1  LQ1  LQ1  UQ3  LQ1  LQ1  LQ1  LQ3  UQ3 
#> [196] UQ3  LQ1  UQ1  LQ3  LQ3  UQ3  LQ3  LQ3  LQ3  LQ3  LQ1  UQ1  UQ3  <NA> LQ1 
#> [211] LQ1  UQ3  UQ1  LQ3  UQ3  LQ3  <NA> UQ1  UQ1  LQ3  UQ3  <NA> UQ3  UQ1  LQ3 
#> [226] LQ1  LQ1  UQ1  LQ3  UQ3  UQ1  UQ1  LQ3  LQ3  UQ1  LQ1  LQ1  LQ1  LQ1  UQ3 
#> [241] LQ3  UQ1  UQ1  LQ1  LQ1  UQ1  UQ1  UQ3  UQ1  UQ1  UQ3  UQ3  UQ3  LQ1  UQ3 
#> [256] LQ3  LQ1  UQ1  LQ1  LQ1  UQ3  LQ1  <NA> LQ1  LQ1  LQ1  UQ3  LQ3  UQ1  UQ1 
#> [271] LQ1  UQ1  LQ1  UQ3  UQ3  UQ3  UQ1  UQ1  UQ3  UQ1  LQ3  UQ1  UQ3  UQ3  UQ1 
#> [286] LQ1  UQ3  UQ1  LQ1  LQ3  UQ3  LQ3  UQ1  LQ3  LQ3  LQ1  UQ1  LQ3  UQ1  LQ1 
#> [301] LQ3  UQ3  LQ3  UQ1  UQ3  LQ1  LQ1  UQ3  LQ3  UQ3  UQ1  UQ1  UQ3  LQ3  <NA>
#> [316] LQ1  LQ1  LQ1  LQ3  UQ1  LQ3  LQ1  UQ1  UQ3  UQ1  UQ1  LQ1  LQ1  UQ1  UQ1 
#> [331] UQ1  UQ1  LQ1  UQ1  UQ3  LQ3  LQ1  LQ1  LQ1  UQ1  LQ1  UQ3  UQ3  LQ1  LQ3 
#> [346] UQ1  <NA> LQ1  UQ3  LQ1  <NA> UQ3  UQ3  UQ1  LQ1  UQ3  UQ3  LQ3  UQ3  UQ1 
#> [361] LQ3  LQ1  UQ1  <NA> LQ1  LQ1  UQ1  UQ3  LQ1  UQ3  LQ1  LQ3  <NA> <NA> UQ1 
#> [376] UQ1  UQ1  UQ1  LQ3  UQ3  UQ1  UQ1  LQ1  UQ3  LQ1  LQ3  UQ3  LQ3  LQ3  LQ1 
#> [391] LQ3  UQ1  LQ1  UQ1  UQ1  UQ3  <NA> LQ1  LQ3  LQ1 
#> Levels: LQ1 < UQ1 < LQ3 < UQ3

# -------------------------
# Using pipes & dplyr
# -------------------------
library(dplyr)

carseats %>%
 mutate(Income_bin = binning(carseats$Income) %>% 
                     extract()) %>%
 group_by(ShelveLoc, Income_bin) %>%
 summarise(freq = n()) %>%
 arrange(desc(freq)) %>%
 head(10)
#> `summarise()` has grouped output by 'ShelveLoc'. You can override using the
#> `.groups` argument.
#> # A tibble: 10 × 3
#> # Groups:   ShelveLoc [1]
#>    ShelveLoc Income_bin       freq
#>    <fct>     <ord>           <int>
#>  1 Medium    [21,30]            25
#>  2 Medium    (62,69]            24
#>  3 Medium    (48,62]            23
#>  4 Medium    (39,48]            21
#>  5 Medium    (30,39]            20
#>  6 Medium    (86.56667,96.6]    20
#>  7 Medium    (108.6333,120]     20
#>  8 Medium    (69,78]            18
#>  9 Medium    (96.6,108.6333]    18
#> 10 Medium    (78,86.56667]      17
Optimal Binning with binning_by()

binning_by() transforms a numeric variable into a categorical variable by optimal binning. This method is often used when developing a scorecard model.

The following binning_by() example optimally binning Advertising considering the target variable US with a binary class.

# optimal binning using character
bin <- binning_by(carseats, "US", "Advertising")
#> Warning in binning_by(carseats, "US", "Advertising"): The factor y has been changed to a numeric vector consisting of 0 and 1.
#> 'Yes' changed to 1 (positive) and 'No' changed to 0 (negative).

# optimal binning using name
bin <- binning_by(carseats, US, Advertising)
#> Warning in binning_by(carseats, US, Advertising): The factor y has been changed to a numeric vector consisting of 0 and 1.
#> 'Yes' changed to 1 (positive) and 'No' changed to 0 (negative).
bin
#> binned type: optimal
#> number of bins: 3
#> x
#> [-1,0]  (0,6] (6,29] 
#>    144     69    187

# summary optimal_bins class
summary(bin)
#> ── Binning Table ──────────────────────── Several Metrics ── 
#>      Bin CntRec CntPos CntNeg RatePos RateNeg    Odds      WoE      IV     JSD
#> 1 [-1,0]    144     19    125 0.07364 0.88028  0.1520 -2.48101 2.00128 0.20093
#> 2  (0,6]     69     54     15 0.20930 0.10563  3.6000  0.68380 0.07089 0.00869
#> 3 (6,29]    187    185      2 0.71705 0.01408 92.5000  3.93008 2.76272 0.21861
#> 4  Total    400    258    142 1.00000 1.00000  1.8169       NA 4.83489 0.42823
#>       AUC
#> 1 0.03241
#> 2 0.01883
#> 3 0.00903
#> 4 0.06028
#> 
#> ── General Metrics ───────────────────────────────────────── 
#> • Gini index                       :  -0.87944
#> • IV (Jeffrey)                     :  4.83489
#> • JS (Jensen-Shannon) Divergence   :  0.42823
#> • Kolmogorov-Smirnov Statistics    :  0.80664
#> • HHI (Herfindahl-Hirschman Index) :  0.37791
#> • HHI (normalized)                 :  0.06687
#> • Cramer's V                       :  0.81863 
#> 
#> ── Significance Tests ──────────────────── Chisquare Test ── 
#>    Bin A  Bin B statistics      p_value
#> 1 [-1,0]  (0,6]   87.67064 7.731349e-21
#> 2  (0,6] (6,29]   34.73349 3.780706e-09

# performance table
attr(bin, "performance")
#>      Bin CntRec CntPos CntNeg CntCumPos CntCumNeg RatePos RateNeg RateCumPos
#> 1 [-1,0]    144     19    125        19       125 0.07364 0.88028    0.07364
#> 2  (0,6]     69     54     15        73       140 0.20930 0.10563    0.28295
#> 3 (6,29]    187    185      2       258       142 0.71705 0.01408    1.00000
#> 4  Total    400    258    142        NA        NA 1.00000 1.00000         NA
#>   RateCumNeg    Odds   LnOdds      WoE      IV     JSD     AUC
#> 1    0.88028  0.1520 -1.88387 -2.48101 2.00128 0.20093 0.03241
#> 2    0.98592  3.6000  1.28093  0.68380 0.07089 0.00869 0.01883
#> 3    1.00000 92.5000  4.52721  3.93008 2.76272 0.21861 0.00903
#> 4         NA  1.8169  0.59713       NA 4.83489 0.42823 0.06028

# visualize optimal_bins class
plot(bin)

# extract binned results
extract(bin)
#>   [1] (6,29] (6,29] (6,29] (0,6]  (0,6]  (6,29] [-1,0] (6,29] [-1,0] [-1,0]
#>  [11] (6,29] (0,6]  (0,6]  (6,29] (6,29] (0,6]  [-1,0] (6,29] [-1,0] (6,29]
#>  [21] (0,6]  (6,29] (0,6]  [-1,0] (6,29] [-1,0] (6,29] [-1,0] [-1,0] (6,29]
#>  [31] [-1,0] (6,29] (6,29] (6,29] [-1,0] (6,29] [-1,0] (0,6]  [-1,0] [-1,0]
#>  [41] [-1,0] [-1,0] [-1,0] (6,29] (0,6]  [-1,0] (6,29] [-1,0] [-1,0] [-1,0]
#>  [51] (6,29] [-1,0] (0,6]  (6,29] (6,29] (0,6]  [-1,0] [-1,0] (6,29] (0,6] 
#>  [61] (6,29] [-1,0] [-1,0] (6,29] (6,29] [-1,0] [-1,0] (6,29] (6,29] [-1,0]
#>  [71] (6,29] (6,29] [-1,0] (6,29] (0,6]  (6,29] (6,29] (6,29] (0,6]  [-1,0]
#>  [81] (6,29] [-1,0] (0,6]  (6,29] [-1,0] [-1,0] (6,29] (6,29] (6,29] (0,6] 
#>  [91] [-1,0] (6,29] [-1,0] [-1,0] (0,6]  (6,29] (6,29] (0,6]  (6,29] (0,6] 
#> [101] (6,29] [-1,0] [-1,0] [-1,0] [-1,0] (6,29] [-1,0] [-1,0] (0,6]  [-1,0]
#> [111] (6,29] (6,29] (0,6]  (6,29] (6,29] [-1,0] [-1,0] [-1,0] (0,6]  (6,29]
#> [121] (6,29] (6,29] (0,6]  [-1,0] [-1,0] [-1,0] (0,6]  (0,6]  (0,6]  (6,29]
#> [131] (6,29] (0,6]  (6,29] (0,6]  [-1,0] (6,29] [-1,0] [-1,0] (6,29] (6,29]
#> [141] (6,29] [-1,0] [-1,0] (6,29] [-1,0] (6,29] [-1,0] (6,29] [-1,0] (6,29]
#> [151] (6,29] (6,29] [-1,0] (6,29] (6,29] [-1,0] [-1,0] (6,29] (0,6]  [-1,0]
#> [161] [-1,0] (0,6]  [-1,0] [-1,0] [-1,0] (6,29] (6,29] [-1,0] [-1,0] (6,29]
#> [171] (6,29] (6,29] (6,29] (0,6]  [-1,0] [-1,0] (6,29] [-1,0] (6,29] (0,6] 
#> [181] (6,29] [-1,0] (0,6]  (0,6]  (6,29] (6,29] [-1,0] [-1,0] [-1,0] (6,29]
#> [191] (6,29] (6,29] [-1,0] (6,29] (6,29] (0,6]  (0,6]  [-1,0] (0,6]  (0,6] 
#> [201] [-1,0] [-1,0] (0,6]  [-1,0] [-1,0] (0,6]  [-1,0] [-1,0] [-1,0] (6,29]
#> [211] (0,6]  (6,29] (6,29] (0,6]  (0,6]  (6,29] [-1,0] [-1,0] (6,29] (6,29]
#> [221] (6,29] [-1,0] (0,6]  (6,29] [-1,0] [-1,0] [-1,0] (6,29] (6,29] [-1,0]
#> [231] [-1,0] [-1,0] (6,29] (6,29] (6,29] (6,29] (6,29] (6,29] [-1,0] [-1,0]
#> [241] [-1,0] [-1,0] [-1,0] (6,29] [-1,0] [-1,0] (6,29] [-1,0] [-1,0] [-1,0]
#> [251] (6,29] (0,6]  [-1,0] (0,6]  (6,29] (6,29] [-1,0] (6,29] [-1,0] (6,29]
#> [261] (6,29] (0,6]  (6,29] (0,6]  (0,6]  (6,29] (6,29] (6,29] [-1,0] [-1,0]
#> [271] [-1,0] [-1,0] [-1,0] (6,29] (0,6]  (6,29] (6,29] (6,29] (0,6]  (6,29]
#> [281] (6,29] (6,29] [-1,0] [-1,0] (6,29] (6,29] (6,29] (0,6]  [-1,0] (6,29]
#> [291] (6,29] [-1,0] (6,29] [-1,0] (0,6]  (6,29] (6,29] (6,29] [-1,0] (6,29]
#> [301] (0,6]  [-1,0] (6,29] (6,29] (6,29] (6,29] (0,6]  [-1,0] (6,29] (6,29]
#> [311] (6,29] (6,29] (0,6]  (0,6]  (6,29] (6,29] (0,6]  [-1,0] (6,29] (6,29]
#> [321] (6,29] (0,6]  (6,29] (6,29] (0,6]  (6,29] [-1,0] (6,29] (0,6]  (6,29]
#> [331] [-1,0] (6,29] (6,29] (6,29] (6,29] (6,29] (0,6]  [-1,0] [-1,0] (0,6] 
#> [341] [-1,0] [-1,0] (6,29] (6,29] [-1,0] [-1,0] [-1,0] [-1,0] (6,29] (6,29]
#> [351] (6,29] (6,29] (6,29] (6,29] (0,6]  [-1,0] [-1,0] (0,6]  (6,29] (6,29]
#> [361] (6,29] (6,29] [-1,0] (0,6]  (6,29] [-1,0] (6,29] [-1,0] (6,29] (6,29]
#> [371] (6,29] [-1,0] [-1,0] [-1,0] (6,29] (0,6]  (6,29] [-1,0] (0,6]  [-1,0]
#> [381] (6,29] (6,29] (6,29] [-1,0] (6,29] (6,29] [-1,0] (6,29] (6,29] (6,29]
#> [391] (6,29] [-1,0] (6,29] (6,29] (6,29] (6,29] (0,6]  (6,29] (6,29] [-1,0]
#> Levels: [-1,0] < (0,6] < (6,29]

Reporting

Diagnostic Report

dlookr provides two automated data diagnostic reports:

Create a diagnostic report using diagnose_web_report()

diagnose_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

Some arguments for dynamic web report

diagnose_web_report() generates various reports with the following arguments.

The following script creates a quality diagnosis report for the tbl_df class object, flights.

flights %>%
  diagnose_web_report(subtitle = "flights", output_dir = "./", 
                      output_file = "Diagn.html", theme = "blue")
Screenshot of dynamic report
The part of the report

The part of the report

The dynamic contents of the report

The dynamic contents of the report

Create a diagnostic report using diagnose_paged_report()

diagnose_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

Some arguments for static paged report

diagnose_paged_report() generates various reports with the following arguments.

The following script creates a quality diagnosis report for the tbl_df class object, flights.

flights %>%
  diagnose_paged_report(subtitle = "flights", output_dir = "./",
                        output_file = "Diagn.pdf", theme = "blue")
Screenshot of static report
The part of the report

The part of the report

The dynamic contents of the report

The dynamic contents of the report

EDA Report

dlookr provides two automated EDA reports:

Create a dynamic report using eda_web_report()

eda_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

Some arguments for dynamic web report

eda_web_report() generates various reports with the following arguments.

The following script creates a EDA report for the data.frame class object, heartfailure.

heartfailure %>%
  eda_web_report(target = "death_event", subtitle = "heartfailure", 
                 output_dir = "./", output_file = "EDA.html", theme = "blue")
Screenshot of dynamic report
The part of the report

The part of the report

Create a EDA report using eda_paged_report()

eda_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

Some arguments for static paged report

eda_paged_report() generates various reports with the following arguments.

The following script creates a EDA report for the data.frame class object, heartfailure.

heartfailure %>%
  eda_paged_report(target = "death_event", subtitle = "heartfailure", 
                   output_dir = "./", output_file = "EDA.pdf", theme = "blue")
Screenshot of static report
The part of the report

The part of the report

The dynamic contents of the report

The dynamic contents of the report

Data Transformation Report

dlookr provides two automated data transformation reports:

Create a dynamic report using transformation_web_report()

transformation_web_report() create dynamic report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of dynamic web report

The contents of the report are as follows.:

Some arguments for dynamic web report

transformation_web_report() generates various reports with the following arguments.

The following script creates a data transformation report for the tbl_df class object, heartfailure.

heartfailure %>%
  transformation_web_report(target = "death_event", subtitle = "heartfailure",
                            output_dir = "./", output_file = "transformation.html", 
                            theme = "blue")
Screenshot of dynamic report
The part of the report

The part of the report

Create a static report using transformation_paged_report()

transformation_paged_report() create static report for object inherited from data.frame(tbl_df, tbl, etc) or data.frame.

Contents of static paged report

The contents of the report are as follows.:

Some arguments for static paged report

transformation_paged_report() generates various reports with the following arguments.

The following script creates a data transformation report for the data.frame class object, heartfailure.

heartfailure %>%
  transformation_paged_report(target = "death_event", subtitle = "heartfailure",
                              output_dir = "./", output_file = "transformation.pdf", 
                              theme = "blue")
Screenshot of static report
The part of the report

The part of the report

The dynamic contents of the report

The dynamic contents of the report

Supports table of DBMS

Functions that supports tables of DBMS

The DBMS table diagnostic/EDA function supports In-database mode that performs SQL operations on the DBMS side. If the size of the data is large, using In-database mode is faster.

It is difficult to obtain anomaly or to implement the sampling-based algorithm in SQL of DBMS. So some functions do not yet support In-database mode. In this case, it is performed in In-memory mode in which table data is brought to R side and calculated. In this case, if the data size is large, the execution speed may be slow. It supports the collect_size argument, which allows you to import the specified number of samples of data into R.

How to use functions

Preparing table data

Copy the carseats data frame to the SQLite DBMS and create it as a table named TB_CARSEATS. Mysql/MariaDB, PostgreSQL, Oracle DBMS, etc. are also available for your environment.

if (!require(DBI)) install.packages('DBI')
if (!require(RSQLite)) install.packages('RSQLite')
if (!require(dplyr)) install.packages('dplyr')
if (!require(dbplyr)) install.packages('dbplyr')

library(dbplyr)
library(dplyr)

carseats <- Carseats
carseats[sample(seq(NROW(carseats)), 20), "Income"] <- NA
carseats[sample(seq(NROW(carseats)), 5), "Urban"] <- NA

# connect DBMS
con_sqlite <- DBI::dbConnect(RSQLite::SQLite(), ":memory:")

# copy carseats to the DBMS with a table named TB_CARSEATS
copy_to(con_sqlite, carseats, name = "TB_CARSEATS", overwrite = TRUE)

Diagonose table of the DBMS

Diagnose data quality of variables in the DBMS

Use dplyr::tbl() to create a tbl_dbi object, then use it as a data frame object. That is, the data argument of all diagnose function is specified as tbl_dbi object instead of data frame object.

# Diagnosis of all columns
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose()
#> # A tibble: 11 × 6
#>    variables   types     missing_count missing_percent unique_count unique_rate
#>    <chr>       <chr>             <dbl>           <dbl>        <int>       <dbl>
#>  1 Sales       double                0            0             336      0.84  
#>  2 CompPrice   double                0            0              73      0.182 
#>  3 Income      double               20            5              98      0.245 
#>  4 Advertising double                0            0              28      0.07  
#>  5 Population  double                0            0             275      0.688 
#>  6 Price       double                0            0             101      0.252 
#>  7 ShelveLoc   character             0            0               3      0.0075
#>  8 Age         double                0            0              56      0.14  
#>  9 Education   double                0            0               9      0.0225
#> 10 Urban       character             5            1.25            2      0.005 
#> 11 US          character             0            0               2      0.005

# Positions values select columns, and In-memory mode
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose(1, 3, 8, in_database = FALSE)
#> # A tibble: 3 × 6
#>   variables types   missing_count missing_percent unique_count unique_rate
#>   <chr>     <chr>           <int>           <dbl>        <int>       <dbl>
#> 1 Sales     numeric             0               0          336       0.84 
#> 2 Income    numeric            20               5           99       0.248
#> 3 Age       numeric             0               0           56       0.14

Diagnose data quality of categorical variables in the DBMS

# Positions values select variables, and In-memory mode and collect size is 200
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_category(7, in_database = FALSE, collect_size = 200) 
#> # A tibble: 3 × 6
#>   variables levels     N  freq ratio  rank
#>   <chr>     <chr>  <int> <int> <dbl> <int>
#> 1 ShelveLoc Medium   200   113  56.5     1
#> 2 ShelveLoc Bad      200    47  23.5     2
#> 3 ShelveLoc Good     200    40  20       3

Diagnose data quality of numerical variables in the DBMS

# Diagnosis of all numerical variables
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_numeric()
#> # A tibble: 8 × 10
#>   variables     min     Q1   mean median     Q3   max  zero minus outlier
#>   <chr>       <dbl>  <dbl>  <dbl>  <dbl>  <dbl> <dbl> <int> <int>   <int>
#> 1 Sales           0   5.39   7.50   7.49   9.32  16.3     1     0       2
#> 2 CompPrice      77 115    125.   125    135    175       0     0       2
#> 3 Income         21  43.8   68.7   69     91    120       0     0       0
#> 4 Advertising     0   0      6.64   5     12     29     144     0       0
#> 5 Population     10 139    265.   272    398.   509       0     0       0
#> 6 Price          24 100    116.   117    131    191       0     0       5
#> 7 Age            25  39.8   53.3   54.5   66     80       0     0       0
#> 8 Education      10  12     13.9   14     16     18       0     0       0

Diagnose outlier of numerical variables in the DBMS

con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_outlier()  %>%
  filter(outliers_ratio > 1)
#> # A tibble: 1 × 6
#>   variables outliers_cnt outliers_ratio outliers_mean with_mean without_mean
#>   <chr>            <int>          <dbl>         <dbl>     <dbl>        <dbl>
#> 1 Price                5           1.25          100.      116.         116.

Plot outlier information of numerical data diagnosis in the DBMS

# Visualization of numerical variables with a ratio of
# outliers greater than 1%
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  plot_outlier(con_sqlite %>% 
                 tbl("TB_CARSEATS") %>% 
                 diagnose_outlier() %>%
                 filter(outliers_ratio > 1) %>%
                 select(variables) %>%
                 pull())

Reporting the information of data diagnosis for table of thr DBMS

The following shows several examples of creating an data diagnosis report for a DBMS table.

Using the collect_size argument, you can perform data diagnosis with the corresponding number of sample data. If the number of data is very large, use collect_size.

# create html file. 
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_web_report()

# create pdf file. file name is Diagn.pdf
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  diagnose_paged_report(output_format = "pdf", output_file = "Diagn.pdf")

EDA table of the DBMS

Calculating descriptive statistics of numerical column of table in the DBMS

Use dplyr::tbl() to create a tbl_dbi object, then use it as a data frame object. That is, the data argument of all EDA function is specified as tbl_dbi object instead of data frame object.

# extract only those with 'Urban' variable level is "Yes",
# and find 'Sales' statistics by 'ShelveLoc' and 'US'
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(Urban == "Yes") %>%
  group_by(ShelveLoc, US) %>%
  describe(Sales)
#> # A tibble: 6 × 28
#>   described_variables ShelveLoc US        n    na  mean    sd se_mean   IQR
#>   <chr>               <chr>     <chr> <int> <int> <dbl> <dbl>   <dbl> <dbl>
#> 1 Sales               Bad       No       23     0  5.36  1.91   0.398  2.32
#> 2 Sales               Bad       Yes      49     0  5.62  2.60   0.372  3.77
#> 3 Sales               Good      No       18     0  9.21  2.97   0.700  3.71
#> 4 Sales               Good      Yes      38     0 10.9   2.35   0.382  3.27
#> 5 Sales               Medium    No       53     0  6.99  2.10   0.289  3.29
#> 6 Sales               Medium    Yes      96     0  7.55  2.19   0.224  3.39
#> # ℹ 19 more variables: skewness <dbl>, kurtosis <dbl>, p00 <dbl>, p01 <dbl>,
#> #   p05 <dbl>, p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>,
#> #   p50 <dbl>, p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>,
#> #   p95 <dbl>, p99 <dbl>, p100 <dbl>

Test of normality on numeric columns using in the DBMS

# Test log(Income) variables by 'ShelveLoc' and 'US',
# and extract only p.value greater than 0.01.

# SQLite extension functions for log transformation
RSQLite::initExtension(con_sqlite)

con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
 mutate(log_income = log(Income)) %>%
 group_by(ShelveLoc, US) %>%
 normality(log_income) %>%
 filter(p_value > 0.01)
#> # A tibble: 1 × 6
#>   variable   ShelveLoc US    statistic p_value sample
#>   <chr>      <chr>     <chr>     <dbl>   <dbl>  <dbl>
#> 1 log_income Bad       No        0.946  0.0992     34

Normalization visualization of numerical column in the DBMS

# extract only those with 'ShelveLoc' variable level is "Good",
# and plot 'Income' by 'US'
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(US) %>%
  plot_normality(Income)

Compute the correlation coefficient between two columns of table in DBMS

# extract only those with 'ShelveLoc' variable level is "Good",
# and compute the correlation coefficient of 'Sales' variable
# by 'Urban' and 'US' variables.
# And the correlation coefficient is negative and smaller than 0.5
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>%
  filter(coef_corr < 0) %>%
  filter(abs(coef_corr) > 0.5)
#> # A tibble: 6 × 5
#>   Urban US    var1  var2       coef_corr
#>   <chr> <chr> <fct> <fct>          <dbl>
#> 1 No    No    Sales Population    -0.530
#> 2 No    No    Sales Price         -0.838
#> 3 No    Yes   Sales Price         -0.644
#> 4 Yes   No    Sales Price         -0.833
#> 5 Yes   No    Sales Age           -0.649
#> 6 Yes   Yes   Sales Price         -0.604

Visualize correlation plot of numerical columns in the DBMS

# Extract only those with 'ShelveLoc' variable level is "Good",
# and visualize correlation plot of 'Sales' variable by 'Urban'
# and 'US' variables.
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  filter(ShelveLoc == "Good") %>%
  group_by(Urban, US) %>%
  correlate(Sales) %>% 
  plot()

EDA based on target variable

The following is an EDA where the target column is character and the predictor column is a numeric type.

# If the target variable is a categorical variable
categ <- target_by(con_sqlite %>% tbl("TB_CARSEATS") , US)

# If the variable of interest is a numarical variable
cat_num <- relate(categ, Sales)
cat_num
#> # A tibble: 3 × 27
#>   described_variables US        n    na  mean    sd se_mean   IQR skewness
#>   <chr>               <fct> <int> <int> <dbl> <dbl>   <dbl> <dbl>    <dbl>
#> 1 Sales               No      142     0  6.82  2.60   0.218  3.44   0.323 
#> 2 Sales               Yes     258     0  7.87  2.88   0.179  4.23   0.0760
#> 3 Sales               total   400     0  7.50  2.82   0.141  3.93   0.186 
#> # ℹ 18 more variables: kurtosis <dbl>, p00 <dbl>, p01 <dbl>, p05 <dbl>,
#> #   p10 <dbl>, p20 <dbl>, p25 <dbl>, p30 <dbl>, p40 <dbl>, p50 <dbl>,
#> #   p60 <dbl>, p70 <dbl>, p75 <dbl>, p80 <dbl>, p90 <dbl>, p95 <dbl>,
#> #   p99 <dbl>, p100 <dbl>
summary(cat_num)
#>  described_variables     US          n               na         mean      
#>  Length:3            No   :1   Min.   :142.0   Min.   :0   Min.   :6.823  
#>  Class :character    Yes  :1   1st Qu.:200.0   1st Qu.:0   1st Qu.:7.160  
#>  Mode  :character    total:1   Median :258.0   Median :0   Median :7.496  
#>                                Mean   :266.7   Mean   :0   Mean   :7.395  
#>                                3rd Qu.:329.0   3rd Qu.:0   3rd Qu.:7.682  
#>                                Max.   :400.0   Max.   :0   Max.   :7.867  
#>        sd           se_mean            IQR           skewness      
#>  Min.   :2.603   Min.   :0.1412   Min.   :3.442   Min.   :0.07603  
#>  1st Qu.:2.713   1st Qu.:0.1602   1st Qu.:3.686   1st Qu.:0.13080  
#>  Median :2.824   Median :0.1791   Median :3.930   Median :0.18556  
#>  Mean   :2.768   Mean   :0.1796   Mean   :3.866   Mean   :0.19489  
#>  3rd Qu.:2.851   3rd Qu.:0.1988   3rd Qu.:4.077   3rd Qu.:0.25432  
#>  Max.   :2.877   Max.   :0.2184   Max.   :4.225   Max.   :0.32308  
#>     kurtosis             p00              p01              p05       
#>  Min.   :-0.32638   Min.   :0.0000   Min.   :0.4675   Min.   :3.147  
#>  1st Qu.:-0.20363   1st Qu.:0.0000   1st Qu.:0.6868   1st Qu.:3.148  
#>  Median :-0.08088   Median :0.0000   Median :0.9062   Median :3.149  
#>  Mean   : 0.13350   Mean   :0.1233   Mean   :1.0072   Mean   :3.183  
#>  3rd Qu.: 0.36344   3rd Qu.:0.1850   3rd Qu.:1.2771   3rd Qu.:3.200  
#>  Max.   : 0.80776   Max.   :0.3700   Max.   :1.6480   Max.   :3.252  
#>       p10             p20             p25             p30       
#>  Min.   :3.917   Min.   :4.754   Min.   :5.080   Min.   :5.306  
#>  1st Qu.:4.018   1st Qu.:4.910   1st Qu.:5.235   1st Qu.:5.587  
#>  Median :4.119   Median :5.066   Median :5.390   Median :5.867  
#>  Mean   :4.073   Mean   :5.051   Mean   :5.411   Mean   :5.775  
#>  3rd Qu.:4.152   3rd Qu.:5.199   3rd Qu.:5.576   3rd Qu.:6.010  
#>  Max.   :4.184   Max.   :5.332   Max.   :5.763   Max.   :6.153  
#>       p40             p50             p60             p70       
#>  Min.   :5.994   Min.   :6.660   Min.   :7.496   Min.   :7.957  
#>  1st Qu.:6.301   1st Qu.:7.075   1st Qu.:7.787   1st Qu.:8.386  
#>  Median :6.608   Median :7.490   Median :8.078   Median :8.815  
#>  Mean   :6.506   Mean   :7.313   Mean   :8.076   Mean   :8.740  
#>  3rd Qu.:6.762   3rd Qu.:7.640   3rd Qu.:8.366   3rd Qu.:9.132  
#>  Max.   :6.916   Max.   :7.790   Max.   :8.654   Max.   :9.449  
#>       p75             p80              p90              p95       
#>  Min.   :8.523   Min.   : 8.772   Min.   : 9.349   Min.   :11.28  
#>  1st Qu.:8.921   1st Qu.: 9.265   1st Qu.:10.325   1st Qu.:11.86  
#>  Median :9.320   Median : 9.758   Median :11.300   Median :12.44  
#>  Mean   :9.277   Mean   : 9.665   Mean   :10.795   Mean   :12.08  
#>  3rd Qu.:9.654   3rd Qu.:10.111   3rd Qu.:11.518   3rd Qu.:12.49  
#>  Max.   :9.988   Max.   :10.464   Max.   :11.736   Max.   :12.54  
#>       p99             p100      
#>  Min.   :13.64   Min.   :14.90  
#>  1st Qu.:13.78   1st Qu.:15.59  
#>  Median :13.91   Median :16.27  
#>  Mean   :13.86   Mean   :15.81  
#>  3rd Qu.:13.97   3rd Qu.:16.27  
#>  Max.   :14.03   Max.   :16.27
plot(cat_num)

Reporting the information of EDA for table of the DBMS

The following shows several examples of creating an EDA report for a DBMS table.

Using the collect_size argument, you can perform EDA with the corresponding number of sample data. If the number of data is very large, use collect_size.

# create html file. file name is EDA_TB_CARSEATS.html
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_web_report(US, output_file = "EDA_TB_CARSEATS.html")

## target variable is numerical variable
# reporting the EDA information, and collect size is 350
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_web_report(Sales, collect_size = 350)

# create pdf file. file name is EDA2.pdf
con_sqlite %>% 
  tbl("TB_CARSEATS") %>% 
  eda_paged_report("Sales", output_file = "EDA2.pdf")