chop-dbhi / varify-data-warehouse

Data model and loading pipeline for Varify
BSD 2-Clause "Simplified" License
4 stars 6 forks source link

Varify Data Warehouse Development Guide

Build Status Coverage Status

Need some help?

Join our chat room and speak with our dev team: http://www.hipchat.com/gZcKr0p3y

Dependencies

Listed are the download links to each dependency, however most OSes have a package manager or binaries that can be easily installed. Most of the below links describe alternate download and install methods.

On Mac OS X, Homebrew is the recommended way to install most of these libraries.

Setup & Install

Distribute, Pip and virtualenv are required. To check if you have them:

which pip easy_install virtualenv

If nothing prints out, install the libraries corresponding to the commands below:

Watch out for sudo! The root user $PATH most likely does not include /usr/local/bin. If you did not install Python through your distro's package manager, use the absolute path to the new Python binary to prevent installing the above libraries with the wrong version (like Python 2.4 on CentOS 5), e.g. /usr/local/bin/python2.7.

curl http://python-distribute.org/distribute_setup.py | python
curl https://raw.github.com/pypa/pip/master/contrib/get-pip.py | python
pip install virtualenv

Create your virtualenv:

virtualenv vdw-env
cd vdw-env
. bin/activate

Clone the repo:

git clone https://github.com/cbmi/varify-data-warehouse.git
cd varify-data-warehouse

Install the requirements:

pip install -r requirements.txt

Under Mac OS X 10.8 or later, with XCode 5.1 or later, the following may be necessary in order for pip to install requirements:

export CFLAGS=-Qunused-arguments

Start the postgres server. This may look something like:

initdb /usr/local/var/postgres -E utf8

pg_ctl -D /usr/local/var/postgres -l /usr/local/var/postgres/server.log start

Create the varify database, you might first want to make sure you are a user

createuser --user postgres -s -r yourusername
createdb varify

Start memcached

memcached -d

Start redis

redis-server /usr/local/etc/redis.conf

If you are on a Mac, you will need to start postfix to allow SMTP:

sudo postfix start

Initialize the Django and Varify schemas

./bin/manage.py syncdb
./bin/manage.py migrate

Then either start the built-in Django server:

./bin/manage.py runserver

or run a uwsgi process:

uwsgi --ini server/uwsgi/local.ini --protocol http --socket 127.0.0.1:8000 --check-static _site

Local Settings

local_settings.py is intentionally not versioned (via .gitignore). It should contain any environment-specific settings and/or sensitive settings such as passwords, the SECRET_KEY and other information that should not be in version control. Defining local_settings.py is not mandatory but will warn if it does not exist.

Pipeline

The following describes the steps to execute the loading pipeline, the performance of the pipeline, and the process behind it.

NOTE: All VCF files being loaded into Varify must be annotated with the CBMi fork of SnpEff. The key difference is that the CBMi fork attempts to generate valid HGVS for insertions and deletions, including those which require "walking and rolling" to identify the correct indel frame while the standard SnpEff version only contains a partial implementation of HGVS notation as noted here.

Retrieving Test Data

We have provided a set of test data to use to test the load pipeline or use as sample data when first standing up your Varify instance. To use the test data, run the commands below.

wget https://github.com/cbmi/varify-demo-data/archive/0.1.tar.gz -O varify-demo-data-0.1.tar.gz
tar -zxf varify-demo-data-0.1.tar.gz
gunzip varify-demo-data-0.1/CEU.trio.2010_03.genotypes.annotated.vcf.gz

At this point, the VCF and MANIFEST in the varify-demo-data-0.1 directory are ready for loading in the pipeline. You can use the varify-demo-data-0.1 directory as the argument to the samples queue command in the Queue Samples step below if you want to just load this test data.

Tmux (optional)

Since the pipeline can take a while to load large collections(see Performance section below), you may want to consider following the Tmux steps to attach/detach to/from the load process.

Tmux is like screen, just newer. It is useful for detaching/reattaching sessions with long running processes.

New Session

tmux

Existing Session

tmux attach -t 0 # first session

Activate Environment

source bin/activate

Define RQ_QUEUES

For this example, we will assume you have redis-server running on localhost:6379 against the database with index 0. If you have redis running elsewhere simply update the settings below with the address info and DB you wish to use. Open your local_settings.py file and add the following setting:

RQ_QUEUES = {
    'default': {
        'HOST': 'localhost',
        'PORT': 6379,
        'DB': 0,
    },
    'samples': {
        'HOST': 'localhost',
        'PORT': 6379,
        'DB': 0,
    },
    'variants': {
        'HOST': 'localhost',
        'PORT': 6379,
        'DB': 0,
    },
}

Queue Samples

Optionally specify a directory, otherwise it will recursively scan all directories defined in the VARIFY_SAMPLE_DIRS setting in the Varify project.

./bin/manage.py samples queue [directory]

Kick Off Workers

You can technically start as many of each type for loading data in parallel, but this may cause undesired database contention which could actually slow down the loading process. A single worker for variants is generally preferred and two or three are suitable for the default type.

./bin/manage.py rqworker variants &
./bin/manage.py rqworker default &

Note, these workers will run forever, if there is only a single sample being loaded, the --burst argument can be used to terminate the worker when there are no more items left in the queue.

Monitor Workers

You can monitor the workers and the queues using the rq-dashboard or rqinfo. Information on setting up and using those services can be found here.

Post-Load

After the batch of samples have been loaded, two more commands need to be executed to update the annotations and cohort frequencies. These are performed post-load for performance reasons.

./bin/manage.py variants load --evs --1000g --sift --polyphen2 > variants.load.txt 2>&1 &
./bin/manage.py samples allele-freqs > samples.allele-freqs.txt 2>&1 &

Performance

Baseline

Iteration over flat file (no parsing) with batch counting (every 1000)

Baseline VCF

Iteration over VCF parsed file using PyVCF

Parallelized Queue/Worker Process

Summary of Workflow

  1. Fill Queue
  2. Spawn Worker(s)
  3. Consume Job(s)
    • Validate Input
    • (work)
    • Validate Output
    • Commit

Parallelism Constraints

The COPY command is a single statement which means the data being loaded is all or nothing. If multiple samples are being loaded in parallel, it is likely they will have overlapping variants.

To prevent integrity errors, workers will need to consult one or more centralized caches to check if the current variant has been addressed already. If this is the case, the variant will be skipped by the worker.

This incurs a second issue in that downstream jobs depend on the existence of some data that does not yet exist because another worker has not yet committed its data. In this case, non-matches will be queued up in the deferred queue that can be run at a later time, after the default queue is empty or in parallel with the default queue.