chshin10 / epinet

EPINET: A Fully-Convolutional Neural Network using Epipolar Geometry for Depth from Light Field Images
MIT License
90 stars 39 forks source link

EPINET: A Fully-Convolutional Neural Network using Epipolar Geometry for Depth from Light Field Images

EPINET: A Fully-Convolutional Neural Network using Epipolar Geometry for Depth from Light Field Images

Changha Shin, Hae-Gon Jeon, Youngjin Yoon, In So Kweon and Seon Joo Kim

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jun 2018

https://arxiv.org/pdf/1804.02379.pdf

Contact: changhashin@yonsei.ac.kr

Environments

Train the EPINET

First, you need to download HCI Light field dataset from http://hci-lightfield.iwr.uni-heidelberg.de/. Unzip the LF dataset and move 'additional/, training/, test/, stratified/ ' into the 'hci_dataset/'.

And run python EPINET_train.py

Test the EPINET

Run python EPINET_plusX_9conv22_save.py

Last modified date: 11/29/2018