The purpose of this repository is to provide a trainable online handwritten mathematical expression recognition system, which can be used with a stroke extractor to do offline handwritten mathematical expression recognition.
git clone 'https://github.com/chungkwong/mathocr-tap.git'
cd mathocr-tap/work/src
./train.sh && ./train_weightnoise.sh
./test.sh
./recognize.sh IMAGE_FILE IMAGE_FILE...
data
: contains compressed dataset
offline.tar.xz
: rendered from CROHME 2016 and then extractedwork
:
data
: contains dataset
train
: contains the training setvalid
: contains the validation settest
: contains the test settest_symlg
: contains the test set in symLG formatmodel
: contains trained models(ensemble model is supported by placing multiple models here)
NAME.npz.pkl
NAME.npz
log
: contains logs and test results
DATE-TIME
log.txt
: logvalid_decode_result.txt
: reognition results on the validation settest_decode_result.txt
: recognition results on the test setResults
: Test reportsrc
: contains programs
crohmelib
: contains tools for InkML formatlgeval
: contains tools for evaluationconvert2symLG
: contains tools for format conversiontrain.sh
: entrance of the training procedure(without weight noise)train_weightnoise.sh
: entrance of the training procedure(with weight noise)test.sh
: entrance of the test procedurerecognize.sh
: entrance of the recognizerHere are accuracy of some offline handwritten mathematical expression recognition systems on the test set of CROHME 2016.
System | Exact | <=1 error | <= 2 errors | Structural correct | Remark |
---|---|---|---|---|---|
USTC, WAP | 42.0% | 55.1% | 59.3% | - | Ensemble modeling is applied(5 models) |
Stroke extractor + TAP | 43.07% | 56.67% | 62.95% | 64.95% | |
TDTU, CNN-BLSTM-LSTM | 45.60% | 59.29% | 65.65% | - | Data augmentation is applied(36.27% before data augmentation) |
USTC, MSD | 50.1% | 63.8% | 67.4% | - | Ensemble modeling is applied(5 models) |
It should be noted that online accuracy of this version of TAP is 43.68%, which is close to its offline counterpart. The point is that if we have trained an online recognizer with extracted strokes, we can obtain an offline recognizer which is nearly as good as it.
If you are interested in online mathematical expression recognition, you can read Track, attend and parse (TAP): An end-to-end framework for online handwritten mathematical expression recognition:
@article{zhang2018track,
title={Track, Attend and Parse (TAP): An End-to-end Framework for Online Handwritten Mathematical Expression Recognition},
author={Zhang, Jianshu and Du, Jun and Dai, Lirong},
journal={IEEE Transactions on Multimedia},
year={2018},
publisher={IEEE}
}
If you are interested in stroke extraction, you can read Stroke extraction for offline handwritten mathematical expression recognition:
@ARTICLE{9051736,
author={C. {Chan}},
journal={IEEE Access},
title={Stroke Extraction for Offline Handwritten Mathematical Expression Recognition},
year={2020},
volume={8},
pages={61565-61575},
doi={10.1109/ACCESS.2020.2984627}}
本仓库的目的是提供一个可训练的联机手写数学公式识别系统,配合一个笔划提取器,可以用于打造一个脱机手写数学公式识别系统。
git clone 'https://github.com/chungkwong/mathocr-tap.git'
cd mathocr-tap/work/src
./train.sh && ./train_weightnoise.sh
./test.sh
./recognize.sh 图片 图片...
data
:存放压缩的数据集
offline.tar.xz
是对CROHME 2016数据集作渲染再笔划提取的结果work
:
data
:存放已解压数据集
train
:存放训练集valid
:存放检验集test
:存放测试集test_symlg
: 存放symLG格式的测试集model
:存放训练出的模型(放多个模型的话它们在测试时会聚合起来)
名称.npz.pkl
名称.npz
log
:存放训练日志和测试结果
开始日期-开始时间
log.txt
:训练日志valid_decode_result.txt
:检验集上结果test_decode_result.txt
:测试集上结果Results
:测试报告src
:存放程序代码
crohmelib
:存放用于处理CROHME数据集中InkML文件的工具lgeval
:存放用于计算准确率的工具convert2symLG
:存放用于结果格式转换的工具train.sh
:训练程序入口(不使用权重噪声)train_weightnoise.sh
:训练程序入口(使用权重噪声)test.sh
:测试程序入口recognize.sh
: 识别器入口以下是比较本系统和其它脱机手写数学公式识别系统在CROHME 2016测试集上的准确率:
系统 | 完全正确 | 至多一个错误 | 至多两个错误 | 结构正确 | 注记 |
---|---|---|---|---|---|
USTC, WAP | 42.0% | 55.1% | 59.3% | - | 组合了五个模型 |
笔划提取 + TAP | 43.07% | 56.67% | 62.95% | 64.95% | |
TDTU, CNN-BLSTM-LSTM | 45.60% | 59.29% | 65.65% | - | 使用了扩充数据集(原数据集上为36.27%) |
USTC, MSD | 50.1% | 63.8% | 67.4% | - | 组合了五个模型 |
值得注意的是,这版本TAP的联机识别准确率为43.68%,与脱机识别准确率相若。这表明通过用提取出的笔划去训练一个联机识别系统,可以得到一个准确度与之相当的脱机识别系统。
如果你对联机手写数学公式识别系统感兴趣,请参阅Track, attend and parse (TAP): An end-to-end framework for online handwritten mathematical expression recognition:
@article{zhang2018track,
title={Track, Attend and Parse (TAP): An End-to-end Framework for Online Handwritten Mathematical Expression Recognition},
author={Zhang, Jianshu and Du, Jun and Dai, Lirong},
journal={IEEE Transactions on Multimedia},
year={2018},
publisher={IEEE}
}
如果你对笔划提取算法感兴趣,请参阅Stroke extraction for offline handwritten mathematical expression recognition:
@ARTICLE{9051736,
author={C. {Chan}},
journal={IEEE Access},
title={Stroke Extraction for Offline Handwritten Mathematical Expression Recognition},
year={2020},
volume={8},
pages={61565-61575},
doi={10.1109/ACCESS.2020.2984627}}