This repository contains the implementation of Spectrum, as detailed in the paper Spectrum: Targeted Training on Signal to Noise Ratio.
Spectrum is a tool for scanning and evaluating the Signal-to-Noise Ratio (SNR) of layers in large language models. By identifying the top n% of layers with the highest SNR, you can optimize training efficiency.
To use Spectrum, you need to have Python installed. Clone this repository and install the necessary dependencies:
git clone https://github.com/cognitivecomputations/spectrum.git
cd spectrum
pip install -r requirements.txt
To use Spectrum, run the following command:
python spectrum.py --model-name <insert local or HF repo here> --top-percent <top % of snr ratios to target>
--model-name
: Specify the local model path or the Hugging Face repository.--top-percent
: Specify the top percentage of SNR layers you want to retrieve.Spectrum will check the model_snr_results
folder to see if the model has already been scanned. If not, it will prompt you for the batch size to use for scanning. Once the scan is complete, it will output the SNR ratios in the model_snr_results
folder and provide a sorted list of the highest to lowest SNR ratios along with an unfrozen parameters YAML file.
python spectrum.py --model-name meta-llama/Meta-Llama-3-8B-Instruct --top-percent 50
It will check the model_snr_results folder to see if we've already scanned it (we invite you to add your own scans for models we don't have via PR) - if we have, it will give you the top n% of those ratios. Otherwise, it will ask you what batch size you want to scan at. We've been able to use a batch_size of 4 for 70b models on an 8xH100 node. It will then load the model, and you will be presented with all available modules to scan. We typically only select the MLP/attn layers - but if you're doing continued pretraining or language tasks it wouldn't hurt to include all available modules.
It will then scan the model, and output the snr ratios in the model_snr_results folder. It will also output a sorted from highest to lowest SNR ratios, along with an unfrozen parameters yaml. This matches an axolotl config, and you can copy and paste it directly into your axolotl yaml. That's it!
If you're using Axolotl, the generated YAML file can be directly integrated.
For integration with other libraries, we provide a simple script to freeze and unfreeze parameters:
def _freeze_and_unfreeze_parameters(self):
# Freeze all parameters
for param in self.model.parameters():
param.requires_grad = False
#unfreeze spectrum parameters
for name, param in self.model.named_parameters():
if any(unfrozen_param in name for unfrozen_param in self.unfrozen_parameters):
param.requires_grad = True
unfrozen_parameters = [
'model.layers.62.mlp.down_proj', 'model.layers.63.mlp.down_proj', 'model.layers.66.mlp.down_proj',
'model.layers.65.mlp.down_proj', 'model.layers.64.mlp.down_proj', 'model.layers.67.mlp.down_proj',
'model.layers.68.mlp.down_proj', 'model.layers.60.mlp.down_proj', 'model.layers.31.mlp.down_proj',
'model.layers.69.mlp.down_proj', 'model.layers.61.mlp.down_proj', 'model.layers.59.mlp.down_proj',
'model.layers.70.mlp.down_proj', 'model.layers.30.mlp.down_proj', 'model.layers.76.mlp.down_proj',
'model.layers.72.mlp.down_proj', 'model.layers.77.mlp.down_proj', 'model.layers.71.mlp.down_proj',
'model.layers.29.mlp.down_proj', 'model.layers.58.mlp.down_proj', 'model.layers.78.mlp.gate_proj',
'model.layers.77.mlp.gate_proj', 'model.layers.76.mlp.gate_proj', 'model.layers.79.mlp.gate_proj',
'model.layers.75.mlp.gate_proj', 'model.layers.74.mlp.gate_proj', 'model.layers.73.mlp.gate_proj',
'model.layers.70.mlp.gate_proj', 'model.layers.72.mlp.gate_proj', 'model.layers.71.mlp.gate_proj',
'model.layers.69.mlp.gate_proj', 'model.layers.54.mlp.gate_proj', 'model.layers.68.mlp.gate_proj',
'model.layers.57.mlp.gate_proj', 'model.layers.63.mlp.gate_proj', 'model.layers.49.mlp.gate_proj',
'model.layers.55.mlp.gate_proj', 'model.layers.53.mlp.gate_proj', 'model.layers.44.mlp.gate_proj',
'model.layers.46.mlp.gate_proj', 'model.layers.69.mlp.up_proj', 'model.layers.70.mlp.up_proj',
'model.layers.71.mlp.up_proj', 'model.layers.68.mlp.up_proj', 'model.layers.67.mlp.up_proj',
'model.layers.66.mlp.up_proj', 'model.layers.46.mlp.up_proj', 'model.layers.63.mlp.up_proj',
'model.layers.72.mlp.up_proj', 'model.layers.64.mlp.up_proj', 'model.layers.62.mlp.up_proj',
'model.layers.45.mlp.up_proj', 'model.layers.65.mlp.up_proj', 'model.layers.73.mlp.up_proj',
'model.layers.47.mlp.up_proj', 'model.layers.44.mlp.up_proj', 'model.layers.49.mlp.up_proj',
'model.layers.48.mlp.up_proj', 'model.layers.53.mlp.up_proj', 'model.layers.74.mlp.up_proj',
'model.layers.79.self_attn.k_proj', 'model.layers.36.self_attn.k_proj', 'model.layers.35.self_attn.k_proj',
'model.layers.74.self_attn.k_proj', 'model.layers.34.self_attn.k_proj', 'model.layers.78.self_attn.k_proj',
'model.layers.77.self_attn.k_proj', 'model.layers.37.self_attn.k_proj', 'model.layers.39.self_attn.k_proj',
'model.layers.41.self_attn.k_proj', 'model.layers.38.self_attn.k_proj', 'model.layers.33.self_attn.k_proj',
'model.layers.69.self_attn.k_proj', 'model.layers.42.self_attn.k_proj', 'model.layers.32.self_attn.k_proj',
'model.layers.25.self_attn.k_proj', 'model.layers.70.self_attn.k_proj', 'model.layers.22.self_attn.k_proj',
'model.layers.63.self_attn.k_proj', 'model.layers.29.self_attn.k_proj', 'model.layers.14.self_attn.o_proj',
'model.layers.39.self_attn.o_proj', 'model.layers.19.self_attn.o_proj', 'model.layers.16.self_attn.o_proj',
'model.layers.17.self_attn.o_proj', 'model.layers.15.self_attn.o_proj', 'model.layers.69.self_attn.o_proj',
'model.layers.12.self_attn.o_proj', 'model.layers.42.self_attn.o_proj', 'model.layers.23.self_attn.o_proj',
'model.layers.22.self_attn.o_proj', 'model.layers.29.self_attn.o_proj', 'model.layers.13.self_attn.o_proj',
'model.layers.46.self_attn.o_proj', 'model.layers.52.self_attn.o_proj', 'model.layers.26.self_attn.o_proj',
'model.layers.38.self_attn.o_proj', 'model.layers.41.self_attn.o_proj', 'model.layers.18.self_attn.o_proj',
'model.layers.49.self_attn.o_proj', 'model.layers.1.self_attn.q_proj', 'model.layers.2.self_attn.q_proj',
'model.layers.3.self_attn.q_proj', 'model.layers.5.self_attn.q_proj', 'model.layers.4.self_attn.q_proj',
'model.layers.0.self_attn.q_proj', 'model.layers.6.self_attn.q_proj', 'model.layers.8.self_attn.q_proj',
'model.layers.7.self_attn.q_proj', 'model.layers.9.self_attn.q_proj', 'model.layers.10.self_attn.q_proj',
'model.layers.12.self_attn.q_proj', 'model.layers.19.self_attn.q_proj', 'model.layers.18.self_attn.q_proj',
'model.layers.25.self_attn.q_proj', 'model.layers.11.self_attn.q_proj', 'model.layers.15.self_attn.q_proj',
'model.layers.61.self_attn.q_proj', 'model.layers.17.self_attn.q_proj', 'model.layers.55.self_attn.q_proj',
'model.layers.15.self_attn.v_proj', 'model.layers.16.self_attn.v_proj', 'model.layers.23.self_attn.v_proj',
'model.layers.24.self_attn.v_proj', 'model.layers.25.self_attn.v_proj', 'model.layers.26.self_attn.v_proj',
'model.layers.27.self_attn.v_proj', 'model.layers.28.self_attn.v_proj', 'model.layers.29.self_attn.v_proj',
'model.layers.30.self_attn.v_proj', 'model.layers.31.self_attn.v_proj', 'model.layers.32.self_attn.v_proj',
'model.layers.33.self_attn.v_proj', 'model.layers.34.self_attn.v_proj', 'model.layers.35.self_attn.v_proj',
'model.layers.36.self_attn.v_proj', 'model.layers.37.self_attn.v_proj', 'model.layers.38.self_attn.v_proj',
'model.layers.39.self_attn.v_proj', 'model.layers.41.self_attn.v_proj'
]
Replace unfrozen_parameters
with the layers specific to your model.
base_model: Qwen/Qwen2-72B
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
trust_remote_code: true
# load_in_8bit: true
# load_in_4bit: false
# strict: false
datasets:
- path: /workspace/datasets/dolphin-2.9.2/dolphin201-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/dolphin-coder-codegen-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/dolphin-coder-translate-sharegpt2.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/m-a-p_Code-Feedback-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/m-a-p_CodeFeedback-Filtered-Instruction-sharegpt-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/not_samantha_norefusals.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/openhermes200k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/Orca-Math-resort-unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/SystemChat_sharegpt.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/toolbench_instruct_j1s1_3k_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/toolbench_negative_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/toolbench_react_10p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/toolbench_tflan_cot_30p_unfiltered.jsonl
type: sharegpt
conversation: chatml
- path: /workspace/datasets/dolphin-2.9.2/agent_instruct_react_unfiltered.jsonl
type: sharegpt
conversation: chatml
unfrozen_parameters:
- ^lm_head.weight$
- ^model.embed_tokens.weight$
# mlp.down_proj layers
- model.layers.62.mlp.down_proj
- model.layers.63.mlp.down_proj
- model.layers.66.mlp.down_proj
- model.layers.65.mlp.down_proj
- model.layers.64.mlp.down_proj
- model.layers.67.mlp.down_proj
- model.layers.68.mlp.down_proj
- model.layers.60.mlp.down_proj
- model.layers.31.mlp.down_proj
- model.layers.69.mlp.down_proj
- model.layers.61.mlp.down_proj
- model.layers.59.mlp.down_proj
- model.layers.70.mlp.down_proj
- model.layers.30.mlp.down_proj
- model.layers.76.mlp.down_proj
- model.layers.72.mlp.down_proj
- model.layers.77.mlp.down_proj
- model.layers.71.mlp.down_proj
- model.layers.29.mlp.down_proj
- model.layers.58.mlp.down_proj
- model.layers.75.mlp.down_proj
- model.layers.32.mlp.down_proj
- model.layers.56.mlp.down_proj
- model.layers.28.mlp.down_proj
- model.layers.26.mlp.down_proj
- model.layers.33.mlp.down_proj
- model.layers.34.mlp.down_proj
- model.layers.57.mlp.down_proj
- model.layers.27.mlp.down_proj
- model.layers.25.mlp.down_proj
- model.layers.35.mlp.down_proj
- model.layers.73.mlp.down_proj
- model.layers.24.mlp.down_proj
- model.layers.78.mlp.down_proj
- model.layers.74.mlp.down_proj
- model.layers.54.mlp.down_proj
# mlp.gate_proj layers
- model.layers.78.mlp.gate_proj
- model.layers.77.mlp.gate_proj
- model.layers.76.mlp.gate_proj
- model.layers.79.mlp.gate_proj
- model.layers.75.mlp.gate_proj
- model.layers.74.mlp.gate_proj
- model.layers.73.mlp.gate_proj
- model.layers.70.mlp.gate_proj
- model.layers.72.mlp.gate_proj
- model.layers.71.mlp.gate_proj
- model.layers.69.mlp.gate_proj
- model.layers.54.mlp.gate_proj
- model.layers.68.mlp.gate_proj
- model.layers.57.mlp.gate_proj
- model.layers.63.mlp.gate_proj
- model.layers.49.mlp.gate_proj
- model.layers.55.mlp.gate_proj
- model.layers.53.mlp.gate_proj
- model.layers.44.mlp.gate_proj
- model.layers.46.mlp.gate_proj
- model.layers.67.mlp.gate_proj
- model.layers.58.mlp.gate_proj
- model.layers.56.mlp.gate_proj
- model.layers.45.mlp.gate_proj
- model.layers.50.mlp.gate_proj
- model.layers.62.mlp.gate_proj
- model.layers.64.mlp.gate_proj
- model.layers.48.mlp.gate_proj
- model.layers.66.mlp.gate_proj
- model.layers.52.mlp.gate_proj
- model.layers.40.mlp.gate_proj
- model.layers.47.mlp.gate_proj
- model.layers.43.mlp.gate_proj
- model.layers.65.mlp.gate_proj
- model.layers.61.mlp.gate_proj
- model.layers.59.mlp.gate_proj
# mlp.up_proj layers
- model.layers.69.mlp.up_proj
- model.layers.70.mlp.up_proj
- model.layers.71.mlp.up_proj
- model.layers.68.mlp.up_proj
- model.layers.67.mlp.up_proj
- model.layers.66.mlp.up_proj
- model.layers.46.mlp.up_proj
- model.layers.63.mlp.up_proj
- model.layers.72.mlp.up_proj
- model.layers.64.mlp.up_proj
- model.layers.62.mlp.up_proj
- model.layers.45.mlp.up_proj
- model.layers.65.mlp.up_proj
- model.layers.73.mlp.up_proj
- model.layers.47.mlp.up_proj
- model.layers.44.mlp.up_proj
- model.layers.49.mlp.up_proj
- model.layers.48.mlp.up_proj
- model.layers.53.mlp.up_proj
- model.layers.74.mlp.up_proj
- model.layers.75.mlp.up_proj
- model.layers.57.mlp.up_proj
- model.layers.76.mlp.up_proj
- model.layers.43.mlp.up_proj
- model.layers.42.mlp.up_proj
- model.layers.61.mlp.up_proj
- model.layers.40.mlp.up_proj
- model.layers.56.mlp.up_proj
- model.layers.60.mlp.up_proj
- model.layers.31.mlp.up_proj
- model.layers.54.mlp.up_proj
- model.layers.55.mlp.up_proj
- model.layers.32.mlp.up_proj
- model.layers.41.mlp.up_proj
- model.layers.33.mlp.up_proj
- model.layers.58.mlp.up_proj
# self_attn.k_proj layers
- model.layers.79.self_attn.k_proj
- model.layers.36.self_attn.k_proj
- model.layers.35.self_attn.k_proj
- model.layers.74.self_attn.k_proj
- model.layers.34.self_attn.k_proj
- model.layers.78.self_attn.k_proj
- model.layers.77.self_attn.k_proj
- model.layers.37.self_attn.k_proj
- model.layers.39.self_attn.k_proj
- model.layers.41.self_attn.k_proj
- model.layers.38.self_attn.k_proj
- model.layers.33.self_attn.k_proj
- model.layers.69.self_attn.k_proj
- model.layers.42.self_attn.k_proj
- model.layers.32.self_attn.k_proj
- model.layers.25.self_attn.k_proj
- model.layers.70.self_attn.k_proj
- model.layers.22.self_attn.k_proj
- model.layers.63.self_attn.k_proj
- model.layers.29.self_attn.k_proj
- model.layers.68.self_attn.k_proj
- model.layers.24.self_attn.k_proj
- model.layers.30.self_attn.k_proj
- model.layers.66.self_attn.k_proj
- model.layers.31.self_attn.k_proj
- model.layers.23.self_attn.k_proj
- model.layers.65.self_attn.k_proj
- model.layers.57.self_attn.k_proj
- model.layers.28.self_attn.k_proj
- model.layers.64.self_attn.k_proj
- model.layers.44.self_attn.k_proj
- model.layers.27.self_attn.k_proj
- model.layers.75.self_attn.k_proj
- model.layers.40.self_attn.k_proj
- model.layers.26.self_attn.k_proj
- model.layers.61.self_attn.k_proj
# self_attn.o_proj layers
- model.layers.14.self_attn.o_proj
- model.layers.39.self_attn.o_proj
- model.layers.19.self_attn.o_proj
- model.layers.16.self_attn.o_proj
- model.layers.17.self_attn.o_proj
- model.layers.15.self_attn.o_proj
- model.layers.69.self_attn.o_proj
- model.layers.12.self_attn.o_proj
- model.layers.42.self_attn.o_proj
- model.layers.23.self_attn.o_proj
- model.layers.22.self_attn.o_proj
- model.layers.29.self_attn.o_proj
- model.layers.13.self_attn.o_proj
- model.layers.46.self_attn.o_proj
- model.layers.52.self_attn.o_proj
- model.layers.26.self_attn.o_proj
- model.layers.38.self_attn.o_proj
- model.layers.41.self_attn.o_proj
- model.layers.18.self_attn.o_proj
- model.layers.49.self_attn.o_proj
- model.layers.11.self_attn.o_proj
- model.layers.28.self_attn.o_proj
- model.layers.25.self_attn.o_proj
- model.layers.47.self_attn.o_proj
- model.layers.53.self_attn.o_proj
- model.layers.27.self_attn.o_proj
- model.layers.37.self_attn.o_proj
- model.layers.20.self_attn.o_proj
- model.layers.43.self_attn.o_proj
- model.layers.44.self_attn.o_proj
- model.layers.45.self_attn.o_proj
- model.layers.30.self_attn.o_proj
- model.layers.24.self_attn.o_proj
- model.layers.21.self_attn.o_proj
- model.layers.10.self_attn.o_proj
- model.layers.3.self_attn.o_proj
# self_attn.q_proj layers
- model.layers.1.self_attn.q_proj
- model.layers.2.self_attn.q_proj
- model.layers.3.self_attn.q_proj
- model.layers.5.self_attn.q_proj
- model.layers.4.self_attn.q_proj
- model.layers.0.self_attn.q_proj
- model.layers.6.self_attn.q_proj
- model.layers.8.self_attn.q_proj
- model.layers.7.self_attn.q_proj
- model.layers.9.self_attn.q_proj
- model.layers.10.self_attn.q_proj
- model.layers.12.self_attn.q_proj
- model.layers.19.self_attn.q_proj
- model.layers.18.self_attn.q_proj
- model.layers.25.self_attn.q_proj
- model.layers.11.self_attn.q_proj
- model.layers.15.self_attn.q_proj
- model.layers.61.self_attn.q_proj
- model.layers.17.self_attn.q_proj
- model.layers.55.self_attn.q_proj
- model.layers.54.self_attn.q_proj
- model.layers.16.self_attn.q_proj
- model.layers.68.self_attn.q_proj
- model.layers.49.self_attn.q_proj
- model.layers.48.self_attn.q_proj
- model.layers.52.self_attn.q_proj
- model.layers.13.self_attn.q_proj
- model.layers.42.self_attn.q_proj
- model.layers.57.self_attn.q_proj
- model.layers.60.self_attn.q_proj
- model.layers.53.self_attn.q_proj
- model.layers.64.self_attn.q_proj
- model.layers.66.self_attn.q_proj
- model.layers.62.self_attn.q_proj
- model.layers.59.self_attn.q_proj
- model.layers.50.self_attn.q_proj
# self_attn.v_proj layers
- model.layers.15.self_attn.v_proj
- model.layers.16.self_attn.v_proj
- model.layers.23.self_attn.v_proj
- model.layers.24.self_attn.v_proj
- model.layers.25.self_attn.v_proj
- model.layers.26.self_attn.v_proj
- model.layers.27.self_attn.v_proj
- model.layers.28.self_attn.v_proj
- model.layers.29.self_attn.v_proj
- model.layers.30.self_attn.v_proj
- model.layers.31.self_attn.v_proj
- model.layers.32.self_attn.v_proj
- model.layers.33.self_attn.v_proj
- model.layers.34.self_attn.v_proj
- model.layers.35.self_attn.v_proj
- model.layers.36.self_attn.v_proj
- model.layers.37.self_attn.v_proj
- model.layers.38.self_attn.v_proj
- model.layers.39.self_attn.v_proj
- model.layers.41.self_attn.v_proj
- model.layers.42.self_attn.v_proj
- model.layers.48.self_attn.v_proj
- model.layers.53.self_attn.v_proj
- model.layers.57.self_attn.v_proj
- model.layers.58.self_attn.v_proj
- model.layers.59.self_attn.v_proj
- model.layers.61.self_attn.v_proj
- model.layers.63.self_attn.v_proj
- model.layers.64.self_attn.v_proj
- model.layers.65.self_attn.v_proj
- model.layers.66.self_attn.v_proj
- model.layers.69.self_attn.v_proj
- model.layers.74.self_attn.v_proj
- model.layers.75.self_attn.v_proj
- model.layers.76.self_attn.v_proj
- model.layers.72.self_attn.v_proj
chat_template: chatml
dataset_prepared_path: qwen2-72b-data
val_set_size: 0.01
output_dir: qwen2-72b
sequence_len: 8192 # supports up to 8192
sample_packing: true
pad_to_sequence_len: true
# adapter: lora
# lora_model_dir:
# lora_r: 32
# lora_alpha: 16
# lora_dropout: 0.05
# lora_target_linear: true
# lora_fan_in_fan_out:
wandb_project: qwen2-72b
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
gradient_accumulation_steps: 8
micro_batch_size: 1
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 1e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 10
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 4
save_total_limit: 2
debug:
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.05
fsdp:
fsdp_config:
special_tokens:
pad_token: "<|endoftext|>"
eos_token: "<|im_end|>"
We invite you to contribute to the Spectrum project by adding new model scans. Please fork the repository, add your scans to the model_snr_results
folder, and submit a pull request.
This project is licensed under the Apache-2.0 License.
Thank you for using Spectrum! For any questions or issues, please open an issue on this repository.