cran / rstatix

:exclamation: This is a read-only mirror of the CRAN R package repository. rstatix — Pipe-Friendly Framework for Basic Statistical Tests. Homepage: https://rpkgs.datanovia.com/rstatix/ Report bugs for this package: https://github.com/kassambara/rstatix/issues
1 stars 0 forks source link

R build
status CRAN\_Status\_Badge CRAN
Checks Downloads Total
Downloads

rstatix

Provides a simple and intuitive pipe-friendly framework, coherent with the ‘tidyverse’ design philosophy, for performing basic statistical tests, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses.

The output of each test is automatically transformed into a tidy data frame to facilitate visualization.

Additional functions are available for reshaping, reordering, manipulating and visualizing correlation matrix. Functions are also included to facilitate the analysis of factorial experiments, including purely ‘within-Ss’ designs (repeated measures), purely ‘between-Ss’ designs, and mixed ‘within-and-between-Ss’ designs.

It’s also possible to compute several effect size metrics, including “eta squared” for ANOVA, “Cohen’s d” for t-test and “Cramer’s V” for the association between categorical variables. The package contains helper functions for identifying univariate and multivariate outliers, assessing normality and homogeneity of variances.

Key functions

Descriptive statistics

Comparing means

Facilitating ANOVA computation in R

Post-hoc analyses

Comparing proportions

Comparing variances

Effect Size

Correlation analysis

Computing correlation:

Reshaping correlation matrix:

Subsetting correlation matrix:

Visualizing correlation matrix:

Adjusting p-values, formatting and adding significance symbols

Extract information from statistical tests

Extract information from statistical test results. Useful for labelling plots with test outputs.

Data manipulation helper functions

These functions are internally used in the rstatix and in the ggpubr R package to make it easy to program with tidyverse packages using non standard evaluation.

Others

Installation and loading

if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/rstatix")
install.packages("rstatix")
library(rstatix)  
library(ggpubr)  # For easy data-visualization

Descriptive statistics

# Summary statistics of some selected variables
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>% 
  get_summary_stats(Sepal.Length, Sepal.Width, type = "common")
#> # A tibble: 2 x 10
#>   variable         n   min   max median   iqr  mean    sd    se    ci
#>   <fct>        <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sepal.Length   150   4.3   7.9    5.8   1.3  5.84 0.828 0.068 0.134
#> 2 Sepal.Width    150   2     4.4    3     0.5  3.06 0.436 0.036 0.07

# Whole data frame
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>% get_summary_stats(type = "common")
#> # A tibble: 4 x 10
#>   variable         n   min   max median   iqr  mean    sd    se    ci
#>   <fct>        <dbl> <dbl> <dbl>  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sepal.Length   150   4.3   7.9   5.8    1.3  5.84 0.828 0.068 0.134
#> 2 Sepal.Width    150   2     4.4   3      0.5  3.06 0.436 0.036 0.07 
#> 3 Petal.Length   150   1     6.9   4.35   3.5  3.76 1.76  0.144 0.285
#> 4 Petal.Width    150   0.1   2.5   1.3    1.5  1.20 0.762 0.062 0.123

# Grouped data
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
  group_by(Species) %>% 
  get_summary_stats(Sepal.Length, type = "mean_sd")
#> # A tibble: 3 x 5
#>   Species    variable         n  mean    sd
#>   <fct>      <fct>        <dbl> <dbl> <dbl>
#> 1 setosa     Sepal.Length    50  5.01 0.352
#> 2 versicolor Sepal.Length    50  5.94 0.516
#> 3 virginica  Sepal.Length    50  6.59 0.636

Comparing two means

To compare the means of two groups, you can use either the function t_test() (parametric) or wilcox_test() (non-parametric). In the following example the t-test will be illustrated.

Data

Preparing the demo data set:

df <- ToothGrowth
df$dose <- as.factor(df$dose)
head(df)
#>    len supp dose
#> 1  4.2   VC  0.5
#> 2 11.5   VC  0.5
#> 3  7.3   VC  0.5
#> 4  5.8   VC  0.5
#> 5  6.4   VC  0.5
#> 6 10.0   VC  0.5

One-sample test

The one-sample test is used to compare the mean of one sample to a known standard (or theoretical / hypothetical) mean (mu).

df %>% t_test(len ~ 1, mu = 0)
#> # A tibble: 1 x 7
#>   .y.   group1 group2         n statistic    df        p
#> * <chr> <chr>  <chr>      <int>     <dbl> <dbl>    <dbl>
#> 1 len   1      null model    60      19.1    59 6.94e-27
# One-sample test of each dose level
df %>% 
  group_by(dose) %>%
  t_test(len ~ 1, mu = 0)
#> # A tibble: 3 x 8
#>   dose  .y.   group1 group2         n statistic    df        p
#> * <fct> <chr> <chr>  <chr>      <int>     <dbl> <dbl>    <dbl>
#> 1 0.5   len   1      null model    20      10.5    19 2.24e- 9
#> 2 1     len   1      null model    20      20.0    19 3.22e-14
#> 3 2     len   1      null model    20      30.9    19 1.03e-17

Compare two independent groups

# T-test
stat.test <- df %>% 
  t_test(len ~ supp, paired = FALSE) 
stat.test
#> # A tibble: 1 x 8
#>   .y.   group1 group2    n1    n2 statistic    df      p
#> * <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>  <dbl>
#> 1 len   OJ     VC        30    30      1.92  55.3 0.0606

# Create a box plot
p <- ggboxplot(
  df, x = "supp", y = "len", 
  color = "supp", palette = "jco", ylim = c(0,40)
  )
# Add the p-value manually
p + stat_pvalue_manual(stat.test, label = "p", y.position = 35)

p +stat_pvalue_manual(stat.test, label = "T-test, p = {p}", 
                      y.position = 36)

# Statistical test
stat.test <- df %>%
  group_by(dose) %>%
  t_test(len ~ supp) %>%
  adjust_pvalue() %>%
  add_significance("p.adj")
stat.test
#> # A tibble: 3 x 11
#>   dose  .y.   group1 group2    n1    n2 statistic    df       p   p.adj
#>   <fct> <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>   <dbl>   <dbl>
#> 1 0.5   len   OJ     VC        10    10    3.17    15.0 0.00636 0.0127 
#> 2 1     len   OJ     VC        10    10    4.03    15.4 0.00104 0.00312
#> 3 2     len   OJ     VC        10    10   -0.0461  14.0 0.964   0.964  
#> # … with 1 more variable: p.adj.signif <chr>

# Visualization
ggboxplot(
  df, x = "supp", y = "len",
  color = "supp", palette = "jco", facet.by = "dose",
  ylim = c(0, 40)
  ) +
  stat_pvalue_manual(stat.test, label = "p.adj", y.position = 35)

Compare paired samples

# T-test
stat.test <- df %>% 
  t_test(len ~ supp, paired = TRUE) 
stat.test
#> # A tibble: 1 x 8
#>   .y.   group1 group2    n1    n2 statistic    df       p
#> * <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>   <dbl>
#> 1 len   OJ     VC        30    30      3.30    29 0.00255

# Box plot
p <- ggpaired(
  df, x = "supp", y = "len", color = "supp", palette = "jco", 
  line.color = "gray", line.size = 0.4, ylim = c(0, 40)
  )
p + stat_pvalue_manual(stat.test, label = "p", y.position = 36)

Multiple pairwise comparisons

# Pairwise t-test
pairwise.test <- df %>% t_test(len ~ dose)
pairwise.test
#> # A tibble: 3 x 10
#>   .y.   group1 group2    n1    n2 statistic    df        p    p.adj p.adj.signif
#> * <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>    <dbl>    <dbl> <chr>       
#> 1 len   0.5    1         20    20     -6.48  38.0 1.27e- 7 2.54e- 7 ****        
#> 2 len   0.5    2         20    20    -11.8   36.9 4.40e-14 1.32e-13 ****        
#> 3 len   1      2         20    20     -4.90  37.1 1.91e- 5 1.91e- 5 ****
# Box plot
ggboxplot(df, x = "dose", y = "len")+
  stat_pvalue_manual(
    pairwise.test, label = "p.adj", 
    y.position = c(29, 35, 39)
    )

# Comparison against reference group
#::::::::::::::::::::::::::::::::::::::::
# T-test: each level is compared to the ref group
stat.test <- df %>% t_test(len ~ dose, ref.group = "0.5")
stat.test
#> # A tibble: 2 x 10
#>   .y.   group1 group2    n1    n2 statistic    df        p    p.adj p.adj.signif
#> * <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>    <dbl>    <dbl> <chr>       
#> 1 len   0.5    1         20    20     -6.48  38.0 1.27e- 7 1.27e- 7 ****        
#> 2 len   0.5    2         20    20    -11.8   36.9 4.40e-14 8.80e-14 ****
# Box plot
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
  stat_pvalue_manual(
    stat.test, label = "p.adj.signif", 
    y.position = c(29, 35)
    )

# Remove bracket
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
  stat_pvalue_manual(
    stat.test, label = "p.adj.signif", 
    y.position = c(29, 35),
    remove.bracket = TRUE
    )

# T-test
stat.test <- df %>% t_test(len ~ dose, ref.group = "all")
stat.test
#> # A tibble: 3 x 10
#>   .y.   group1 group2    n1    n2 statistic    df         p   p.adj p.adj.signif
#> * <chr> <chr>  <chr>  <int> <int>     <dbl> <dbl>     <dbl>   <dbl> <chr>       
#> 1 len   all    0.5       60    20     5.82   56.4   2.90e-7 8.70e-7 ****        
#> 2 len   all    1         60    20    -0.660  57.5   5.12e-1 5.12e-1 ns          
#> 3 len   all    2         60    20    -5.61   66.5   4.25e-7 8.70e-7 ****
# Box plot with horizontal mean line
ggboxplot(df, x = "dose", y = "len") +
  stat_pvalue_manual(
    stat.test, label = "p.adj.signif", 
    y.position = 35,
    remove.bracket = TRUE
    ) +
  geom_hline(yintercept = mean(df$len), linetype = 2)

ANOVA test

# One-way ANOVA test
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ dose)
#> ANOVA Table (type II tests)
#> 
#>   Effect DFn DFd      F        p p<.05   ges
#> 1   dose   2  57 67.416 9.53e-16     * 0.703

# Two-way ANOVA test
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ supp*dose)
#> ANOVA Table (type II tests)
#> 
#>      Effect DFn DFd      F        p p<.05   ges
#> 1      supp   1  54 15.572 2.31e-04     * 0.224
#> 2      dose   2  54 92.000 4.05e-18     * 0.773
#> 3 supp:dose   2  54  4.107 2.20e-02     * 0.132

# Two-way repeated measures ANOVA
#:::::::::::::::::::::::::::::::::::::::::
df$id <- rep(1:10, 6) # Add individuals id
# Use formula
# df %>% anova_test(len ~ supp*dose + Error(id/(supp*dose)))
# or use character vector
df %>% anova_test(dv = len, wid = id, within = c(supp, dose))
#> ANOVA Table (type III tests)
#> 
#> $ANOVA
#>      Effect DFn DFd       F        p p<.05   ges
#> 1      supp   1   9  34.866 2.28e-04     * 0.224
#> 2      dose   2  18 106.470 1.06e-10     * 0.773
#> 3 supp:dose   2  18   2.534 1.07e-01       0.132
#> 
#> $`Mauchly's Test for Sphericity`
#>      Effect     W     p p<.05
#> 1      dose 0.807 0.425      
#> 2 supp:dose 0.934 0.761      
#> 
#> $`Sphericity Corrections`
#>      Effect   GGe      DF[GG]    p[GG] p[GG]<.05   HFe      DF[HF]    p[HF]
#> 1      dose 0.838 1.68, 15.09 2.79e-09         * 1.008 2.02, 18.15 1.06e-10
#> 2 supp:dose 0.938 1.88, 16.88 1.12e-01           1.176 2.35, 21.17 1.07e-01
#>   p[HF]<.05
#> 1         *
#> 2

# Use model as arguments
#:::::::::::::::::::::::::::::::::::::::::
.my.model <- lm(yield ~ block + N*P*K, npk)
anova_test(.my.model)
#> ANOVA Table (type II tests)
#> 
#>   Effect DFn DFd      F     p p<.05   ges
#> 1  block   4  12  4.959 0.014     * 0.623
#> 2      N   1  12 12.259 0.004     * 0.505
#> 3      P   1  12  0.544 0.475       0.043
#> 4      K   1  12  6.166 0.029     * 0.339
#> 5    N:P   1  12  1.378 0.263       0.103
#> 6    N:K   1  12  2.146 0.169       0.152
#> 7    P:K   1  12  0.031 0.863       0.003
#> 8  N:P:K   0  12     NA    NA  <NA>    NA

Correlation tests

# Data preparation
mydata <- mtcars %>% 
  select(mpg, disp, hp, drat, wt, qsec)
head(mydata, 3)
#>                mpg disp  hp drat    wt  qsec
#> Mazda RX4     21.0  160 110 3.90 2.620 16.46
#> Mazda RX4 Wag 21.0  160 110 3.90 2.875 17.02
#> Datsun 710    22.8  108  93 3.85 2.320 18.61

# Correlation test between two variables
mydata %>% cor_test(wt, mpg, method = "pearson")
#> # A tibble: 1 x 8
#>   var1  var2    cor statistic        p conf.low conf.high method 
#>   <chr> <chr> <dbl>     <dbl>    <dbl>    <dbl>     <dbl> <chr>  
#> 1 wt    mpg   -0.87     -9.56 1.29e-10   -0.934    -0.744 Pearson

# Correlation of one variable against all
mydata %>% cor_test(mpg, method = "pearson")
#> # A tibble: 5 x 8
#>   var1  var2    cor statistic        p conf.low conf.high method 
#>   <chr> <chr> <dbl>     <dbl>    <dbl>    <dbl>     <dbl> <chr>  
#> 1 mpg   disp  -0.85     -8.75 9.38e-10  -0.923     -0.708 Pearson
#> 2 mpg   hp    -0.78     -6.74 1.79e- 7  -0.885     -0.586 Pearson
#> 3 mpg   drat   0.68      5.10 1.78e- 5   0.436      0.832 Pearson
#> 4 mpg   wt    -0.87     -9.56 1.29e-10  -0.934     -0.744 Pearson
#> 5 mpg   qsec   0.42      2.53 1.71e- 2   0.0820     0.670 Pearson

# Pairwise correlation test between all variables
mydata %>% cor_test(method = "pearson")
#> # A tibble: 36 x 8
#>    var1  var2    cor statistic        p conf.low conf.high method 
#>    <chr> <chr> <dbl>     <dbl>    <dbl>    <dbl>     <dbl> <chr>  
#>  1 mpg   mpg    1       Inf    0.         1          1     Pearson
#>  2 mpg   disp  -0.85     -8.75 9.38e-10  -0.923     -0.708 Pearson
#>  3 mpg   hp    -0.78     -6.74 1.79e- 7  -0.885     -0.586 Pearson
#>  4 mpg   drat   0.68      5.10 1.78e- 5   0.436      0.832 Pearson
#>  5 mpg   wt    -0.87     -9.56 1.29e-10  -0.934     -0.744 Pearson
#>  6 mpg   qsec   0.42      2.53 1.71e- 2   0.0820     0.670 Pearson
#>  7 disp  mpg   -0.85     -8.75 9.38e-10  -0.923     -0.708 Pearson
#>  8 disp  disp   1       Inf    0.         1          1     Pearson
#>  9 disp  hp     0.79      7.08 7.14e- 8   0.611      0.893 Pearson
#> 10 disp  drat  -0.71     -5.53 5.28e- 6  -0.849     -0.481 Pearson
#> # … with 26 more rows

Correlation matrix

# Compute correlation matrix
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat <- mydata %>% cor_mat()
cor.mat
#> # A tibble: 6 x 7
#>   rowname   mpg  disp    hp   drat    wt   qsec
#> * <chr>   <dbl> <dbl> <dbl>  <dbl> <dbl>  <dbl>
#> 1 mpg      1    -0.85 -0.78  0.68  -0.87  0.42 
#> 2 disp    -0.85  1     0.79 -0.71   0.89 -0.43 
#> 3 hp      -0.78  0.79  1    -0.45   0.66 -0.71 
#> 4 drat     0.68 -0.71 -0.45  1     -0.71  0.091
#> 5 wt      -0.87  0.89  0.66 -0.71   1    -0.17 
#> 6 qsec     0.42 -0.43 -0.71  0.091 -0.17  1

# Show the significance levels
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>% cor_get_pval()
#> # A tibble: 6 x 7
#>   rowname      mpg     disp           hp       drat        wt       qsec
#>   <chr>      <dbl>    <dbl>        <dbl>      <dbl>     <dbl>      <dbl>
#> 1 mpg     0.       9.38e-10 0.000000179  0.0000178  1.29e- 10 0.0171    
#> 2 disp    9.38e-10 0.       0.0000000714 0.00000528 1.22e- 11 0.0131    
#> 3 hp      1.79e- 7 7.14e- 8 0            0.00999    4.15e-  5 0.00000577
#> 4 drat    1.78e- 5 5.28e- 6 0.00999      0          4.78e-  6 0.62      
#> 5 wt      1.29e-10 1.22e-11 0.0000415    0.00000478 2.27e-236 0.339     
#> 6 qsec    1.71e- 2 1.31e- 2 0.00000577   0.62       3.39e-  1 0

# Replacing correlation coefficients by symbols
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
  cor_as_symbols() %>%
  pull_lower_triangle()
#>   rowname mpg disp hp drat wt qsec
#> 1     mpg                         
#> 2    disp   *                     
#> 3      hp   *    *                
#> 4    drat   +    +  .             
#> 5      wt   *    *  +    +        
#> 6    qsec   .    .  +

# Mark significant correlations
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
  cor_mark_significant()
#>   rowname       mpg      disp        hp      drat    wt qsec
#> 1     mpg                                                   
#> 2    disp -0.85****                                         
#> 3      hp -0.78****  0.79****                               
#> 4    drat  0.68**** -0.71****   -0.45**                     
#> 5      wt -0.87****  0.89****  0.66**** -0.71****           
#> 6    qsec     0.42*    -0.43* -0.71****     0.091 -0.17

# Draw correlogram using R base plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
  cor_reorder() %>%
  pull_lower_triangle() %>% 
  cor_plot()

Related articles