Provides a simple and intuitive pipe-friendly framework, coherent with the ‘tidyverse’ design philosophy, for performing basic statistical tests, including t-test, Wilcoxon test, ANOVA, Kruskal-Wallis and correlation analyses.
The output of each test is automatically transformed into a tidy data frame to facilitate visualization.
Additional functions are available for reshaping, reordering, manipulating and visualizing correlation matrix. Functions are also included to facilitate the analysis of factorial experiments, including purely ‘within-Ss’ designs (repeated measures), purely ‘between-Ss’ designs, and mixed ‘within-and-between-Ss’ designs.
It’s also possible to compute several effect size metrics, including “eta squared” for ANOVA, “Cohen’s d” for t-test and “Cramer’s V” for the association between categorical variables. The package contains helper functions for identifying univariate and multivariate outliers, assessing normality and homogeneity of variances.
get_summary_stats()
: Compute summary statistics for one or
multiple numeric variables. Can handle grouped data.freq_table()
: Compute frequency table of categorical variables.get_mode()
: Compute the mode of a vector, that is the most
frequent values.identify_outliers()
: Detect univariate outliers using boxplot
methods.mahalanobis_distance()
: Compute Mahalanobis Distance and Flag
Multivariate Outliers.shapiro_test()
and mshapiro_test()
: Univariate and multivariate
Shapiro-Wilk normality test.t_test()
: perform one-sample, two-sample and pairwise t-testswilcox_test()
: perform one-sample, two-sample and pairwise
Wilcoxon testssign_test()
: perform sign test to determine whether there is a
median difference between paired or matched observations.anova_test()
: an easy-to-use wrapper around car::Anova()
to
perform different types of ANOVA tests, including independent
measures ANOVA, repeated measures ANOVA and mixed ANOVA.get_anova_test_table()
: extract ANOVA table from anova_test()
results. Can apply sphericity correction automatically in the case
of within-subject (repeated measures) designs.welch_anova_test()
: Welch one-Way ANOVA test. A pipe-friendly
wrapper around the base function stats::oneway.test()
. This is is
an alternative to the standard one-way ANOVA in the situation where
the homogeneity of variance assumption is violated.kruskal_test()
: perform kruskal-wallis rank sum testfriedman_test()
: Provides a pipe-friendly framework to perform a
Friedman rank sum test, which is the non-parametric alternative to
the one-way repeated measures ANOVA test.get_comparisons()
: Create a list of possible pairwise comparisons
between groups.get_pvalue_position()
: autocompute p-value positions for plotting
significance using ggplot2.factorial_design()
: build factorial design for easily computing
ANOVA using the car::Anova()
function. This might be very useful
for repeated measures ANOVA, which is hard to set up with the car
package.anova_summary()
: Create beautiful summary tables of ANOVA test
results obtained from either car::Anova()
or stats::aov()
. The
results include ANOVA table, generalized effect size and some
assumption checks, such as Mauchly’s test for sphericity in the case
of repeated measures ANOVA.tukey_hsd()
: performs tukey post-hoc tests. Can handle different
inputs formats: aov, lm, formula.dunn_test()
: compute multiple pairwise comparisons following
Kruskal-Wallis test.games_howell_test()
: Performs Games-Howell test, which is used to
compare all possible combinations of group differences when the
assumption of homogeneity of variances is violated.emmeans_test()
: pipe-friendly wrapper arround emmeans
function
to perform pairwise comparisons of estimated marginal means. Useful
for post-hoc analyses following up ANOVA/ANCOVA tests.prop_test()
, pairwise_prop_test()
and row_wise_prop_test()
.
Performs one-sample and two-samples z-test of proportions. Wrappers
around the R base function prop.test()
but have the advantage of
performing pairwise and row-wise z-test of two proportions, the
post-hoc tests following a significant chi-square test of
homogeneity for 2xc and rx2 contingency tables.fisher_test()
, pairwise_fisher_test()
and
row_wise_fisher_test()
: Fisher’s exact test for count data.
Wrappers around the R base function fisher.test()
but have the
advantage of performing pairwise and row-wise fisher tests, the
post-hoc tests following a significant chi-square test of
homogeneity for 2xc and rx2 contingency tables.chisq_test()
, pairwise_chisq_gof_test()
,
pairwise_chisq_test_against_p()
: Performs chi-squared tests,
including goodness-of-fit, homogeneity and independence tests.binom_test()
, pairwise_binom_test()
,
pairwise_binom_test_against_p()
: Performs exact binomial test and
pairwise comparisons following a significant exact multinomial test.
Alternative to the chi-square test of goodness-of-fit-test when the
sample.multinom_test()
: performs an exact multinomial test. Alternative
to the chi-square test of goodness-of-fit-test when the sample size
is small.mcnemar_test()
: performs McNemar chi-squared test to compare
paired proportions. Provides pairwise comparisons between multiple
groups.cochran_qtest()
: extension of the McNemar Chi-squared test for
comparing more than two paired proportions.prop_trend_test()
: Performs chi-squared test for trend in
proportion. This test is also known as Cochran-Armitage trend test.levene_test()
: Pipe-friendly framework to easily compute Levene’s
test for homogeneity of variance across groups. Handles grouped
data.box_m()
: Box’s M-test for homogeneity of covariance matricescohens_d()
: Compute cohen’s d measure of effect size for t-tests.wilcox_effsize()
: Compute Wilcoxon effect size (r).eta_squared()
and partial_eta_squared()
: Compute effect size for
ANOVA.kruskal_effsize()
: Compute the effect size for Kruskal-Wallis test
as the eta squared based on the H-statistic.friedman_effsize()
: Compute the effect size of Friedman test using
the Kendall’s W value.cramer_v()
: Compute Cramer’s V, which measures the strength of the
association between categorical variables.Computing correlation:
cor_test()
: correlation test between two or more variables using
Pearson, Spearman or Kendall methods.cor_mat()
: compute correlation matrix with p-values. Returns a
data frame containing the matrix of the correlation coefficients.
The output has an attribute named “pvalue”, which contains the
matrix of the correlation test p-values.cor_get_pval()
: extract a correlation matrix p-values from an
object of class cor_mat()
.cor_pmat()
: compute the correlation matrix, but returns only the
p-values of the correlation tests.as_cor_mat()
: convert a cor_test
object into a correlation
matrix format.Reshaping correlation matrix:
cor_reorder()
: reorder correlation matrix, according to the
coefficients, using the hierarchical clustering method.cor_gather()
: takes a correlation matrix and collapses (or melt)
it into long format data frame (paired list)cor_spread()
: spread a long correlation data frame into wide
format (correlation matrix).Subsetting correlation matrix:
cor_select()
: subset a correlation matrix by selecting variables
of interest.pull_triangle()
, pull_upper_triangle()
, pull_lower_triangle()
:
pull upper and lower triangular parts of a (correlation) matrix.replace_triangle()
, replace_upper_triangle()
,
replace_lower_triangle()
: replace upper and lower triangular parts
of a (correlation) matrix.Visualizing correlation matrix:
cor_as_symbols()
: replaces the correlation coefficients, in a
matrix, by symbols according to the value.cor_plot()
: visualize correlation matrix using base plot.cor_mark_significant()
: add significance levels to a correlation
matrix.adjust_pvalue()
: add an adjusted p-values column to a data frame
containing statistical test p-valuesadd_significance()
: add a column containing the p-value
significance levelp_round(), p_format(), p_mark_significant()
: rounding and
formatting p-valuesExtract information from statistical test results. Useful for labelling plots with test outputs.
get_pwc_label()
: Extract label from pairwise comparisons.get_test_label()
: Extract label from statistical tests.create_test_label()
: Create labels from user specified test
results.These functions are internally used in the rstatix
and in the ggpubr
R package to make it easy to program with tidyverse packages using non
standard evaluation.
df_select()
, df_arrange()
, df_group_by()
: wrappers arround
dplyr functions for supporting standard and non standard
evaluations.df_nest_by()
: Nest a tibble data frame using grouping
specification. Supports standard and non standard evaluations.df_split_by()
: Split a data frame by groups into subsets or data
panel. Very similar to the function df_nest_by()
. The only
difference is that, it adds labels to each data subset. Labels are
the combination of the grouping variable levels.df_unite()
: Unite multiple columns into one.df_unite_factors()
: Unite factor columns. First, order factors
levels then merge them into one column. The output column is a
factor.df_label_both()
, df_label_value()
: functions to label data
frames rows by by one or multiple grouping variables.df_get_var_names()
: Returns user specified variable names.
Supports standard and non standard evaluation.doo()
: alternative to dplyr::do for doing anything. Technically it
uses nest() + mutate() + map()
to apply arbitrary computation to a
grouped data frame.sample_n_by()
: sample n rows by group from a tableconvert_as_factor(), set_ref_level(), reorder_levels()
: Provides
pipe-friendly functions to convert simultaneously multiple variables
into a factor variable.make_clean_names()
: Pipe-friendly function to make syntactically
valid column names (for input data frame) or names (for input
vector).counts_to_cases()
: converts a contingency table or a data frame of
counts into a data frame of individual observations.if(!require(devtools)) install.packages("devtools")
devtools::install_github("kassambara/rstatix")
install.packages("rstatix")
library(rstatix)
library(ggpubr) # For easy data-visualization
# Summary statistics of some selected variables
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
get_summary_stats(Sepal.Length, Sepal.Width, type = "common")
#> # A tibble: 2 x 10
#> variable n min max median iqr mean sd se ci
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sepal.Length 150 4.3 7.9 5.8 1.3 5.84 0.828 0.068 0.134
#> 2 Sepal.Width 150 2 4.4 3 0.5 3.06 0.436 0.036 0.07
# Whole data frame
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>% get_summary_stats(type = "common")
#> # A tibble: 4 x 10
#> variable n min max median iqr mean sd se ci
#> <fct> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 Sepal.Length 150 4.3 7.9 5.8 1.3 5.84 0.828 0.068 0.134
#> 2 Sepal.Width 150 2 4.4 3 0.5 3.06 0.436 0.036 0.07
#> 3 Petal.Length 150 1 6.9 4.35 3.5 3.76 1.76 0.144 0.285
#> 4 Petal.Width 150 0.1 2.5 1.3 1.5 1.20 0.762 0.062 0.123
# Grouped data
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
iris %>%
group_by(Species) %>%
get_summary_stats(Sepal.Length, type = "mean_sd")
#> # A tibble: 3 x 5
#> Species variable n mean sd
#> <fct> <fct> <dbl> <dbl> <dbl>
#> 1 setosa Sepal.Length 50 5.01 0.352
#> 2 versicolor Sepal.Length 50 5.94 0.516
#> 3 virginica Sepal.Length 50 6.59 0.636
To compare the means of two groups, you can use either the function
t_test()
(parametric) or wilcox_test()
(non-parametric). In the
following example the t-test will be illustrated.
Preparing the demo data set:
df <- ToothGrowth
df$dose <- as.factor(df$dose)
head(df)
#> len supp dose
#> 1 4.2 VC 0.5
#> 2 11.5 VC 0.5
#> 3 7.3 VC 0.5
#> 4 5.8 VC 0.5
#> 5 6.4 VC 0.5
#> 6 10.0 VC 0.5
The one-sample test is used to compare the mean of one sample to a known
standard (or theoretical / hypothetical) mean (mu
).
df %>% t_test(len ~ 1, mu = 0)
#> # A tibble: 1 x 7
#> .y. group1 group2 n statistic df p
#> * <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 len 1 null model 60 19.1 59 6.94e-27
# One-sample test of each dose level
df %>%
group_by(dose) %>%
t_test(len ~ 1, mu = 0)
#> # A tibble: 3 x 8
#> dose .y. group1 group2 n statistic df p
#> * <fct> <chr> <chr> <chr> <int> <dbl> <dbl> <dbl>
#> 1 0.5 len 1 null model 20 10.5 19 2.24e- 9
#> 2 1 len 1 null model 20 20.0 19 3.22e-14
#> 3 2 len 1 null model 20 30.9 19 1.03e-17
# T-test
stat.test <- df %>%
t_test(len ~ supp, paired = FALSE)
stat.test
#> # A tibble: 1 x 8
#> .y. group1 group2 n1 n2 statistic df p
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl>
#> 1 len OJ VC 30 30 1.92 55.3 0.0606
# Create a box plot
p <- ggboxplot(
df, x = "supp", y = "len",
color = "supp", palette = "jco", ylim = c(0,40)
)
# Add the p-value manually
p + stat_pvalue_manual(stat.test, label = "p", y.position = 35)
p +stat_pvalue_manual(stat.test, label = "T-test, p = {p}",
y.position = 36)
# Statistical test
stat.test <- df %>%
group_by(dose) %>%
t_test(len ~ supp) %>%
adjust_pvalue() %>%
add_significance("p.adj")
stat.test
#> # A tibble: 3 x 11
#> dose .y. group1 group2 n1 n2 statistic df p p.adj
#> <fct> <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 0.5 len OJ VC 10 10 3.17 15.0 0.00636 0.0127
#> 2 1 len OJ VC 10 10 4.03 15.4 0.00104 0.00312
#> 3 2 len OJ VC 10 10 -0.0461 14.0 0.964 0.964
#> # … with 1 more variable: p.adj.signif <chr>
# Visualization
ggboxplot(
df, x = "supp", y = "len",
color = "supp", palette = "jco", facet.by = "dose",
ylim = c(0, 40)
) +
stat_pvalue_manual(stat.test, label = "p.adj", y.position = 35)
# T-test
stat.test <- df %>%
t_test(len ~ supp, paired = TRUE)
stat.test
#> # A tibble: 1 x 8
#> .y. group1 group2 n1 n2 statistic df p
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl>
#> 1 len OJ VC 30 30 3.30 29 0.00255
# Box plot
p <- ggpaired(
df, x = "supp", y = "len", color = "supp", palette = "jco",
line.color = "gray", line.size = 0.4, ylim = c(0, 40)
)
p + stat_pvalue_manual(stat.test, label = "p", y.position = 36)
# Pairwise t-test
pairwise.test <- df %>% t_test(len ~ dose)
pairwise.test
#> # A tibble: 3 x 10
#> .y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 len 0.5 1 20 20 -6.48 38.0 1.27e- 7 2.54e- 7 ****
#> 2 len 0.5 2 20 20 -11.8 36.9 4.40e-14 1.32e-13 ****
#> 3 len 1 2 20 20 -4.90 37.1 1.91e- 5 1.91e- 5 ****
# Box plot
ggboxplot(df, x = "dose", y = "len")+
stat_pvalue_manual(
pairwise.test, label = "p.adj",
y.position = c(29, 35, 39)
)
# Comparison against reference group
#::::::::::::::::::::::::::::::::::::::::
# T-test: each level is compared to the ref group
stat.test <- df %>% t_test(len ~ dose, ref.group = "0.5")
stat.test
#> # A tibble: 2 x 10
#> .y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 len 0.5 1 20 20 -6.48 38.0 1.27e- 7 1.27e- 7 ****
#> 2 len 0.5 2 20 20 -11.8 36.9 4.40e-14 8.80e-14 ****
# Box plot
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = c(29, 35)
)
# Remove bracket
ggboxplot(df, x = "dose", y = "len", ylim = c(0, 40)) +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = c(29, 35),
remove.bracket = TRUE
)
# T-test
stat.test <- df %>% t_test(len ~ dose, ref.group = "all")
stat.test
#> # A tibble: 3 x 10
#> .y. group1 group2 n1 n2 statistic df p p.adj p.adj.signif
#> * <chr> <chr> <chr> <int> <int> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 len all 0.5 60 20 5.82 56.4 2.90e-7 8.70e-7 ****
#> 2 len all 1 60 20 -0.660 57.5 5.12e-1 5.12e-1 ns
#> 3 len all 2 60 20 -5.61 66.5 4.25e-7 8.70e-7 ****
# Box plot with horizontal mean line
ggboxplot(df, x = "dose", y = "len") +
stat_pvalue_manual(
stat.test, label = "p.adj.signif",
y.position = 35,
remove.bracket = TRUE
) +
geom_hline(yintercept = mean(df$len), linetype = 2)
# One-way ANOVA test
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ dose)
#> ANOVA Table (type II tests)
#>
#> Effect DFn DFd F p p<.05 ges
#> 1 dose 2 57 67.416 9.53e-16 * 0.703
# Two-way ANOVA test
#:::::::::::::::::::::::::::::::::::::::::
df %>% anova_test(len ~ supp*dose)
#> ANOVA Table (type II tests)
#>
#> Effect DFn DFd F p p<.05 ges
#> 1 supp 1 54 15.572 2.31e-04 * 0.224
#> 2 dose 2 54 92.000 4.05e-18 * 0.773
#> 3 supp:dose 2 54 4.107 2.20e-02 * 0.132
# Two-way repeated measures ANOVA
#:::::::::::::::::::::::::::::::::::::::::
df$id <- rep(1:10, 6) # Add individuals id
# Use formula
# df %>% anova_test(len ~ supp*dose + Error(id/(supp*dose)))
# or use character vector
df %>% anova_test(dv = len, wid = id, within = c(supp, dose))
#> ANOVA Table (type III tests)
#>
#> $ANOVA
#> Effect DFn DFd F p p<.05 ges
#> 1 supp 1 9 34.866 2.28e-04 * 0.224
#> 2 dose 2 18 106.470 1.06e-10 * 0.773
#> 3 supp:dose 2 18 2.534 1.07e-01 0.132
#>
#> $`Mauchly's Test for Sphericity`
#> Effect W p p<.05
#> 1 dose 0.807 0.425
#> 2 supp:dose 0.934 0.761
#>
#> $`Sphericity Corrections`
#> Effect GGe DF[GG] p[GG] p[GG]<.05 HFe DF[HF] p[HF]
#> 1 dose 0.838 1.68, 15.09 2.79e-09 * 1.008 2.02, 18.15 1.06e-10
#> 2 supp:dose 0.938 1.88, 16.88 1.12e-01 1.176 2.35, 21.17 1.07e-01
#> p[HF]<.05
#> 1 *
#> 2
# Use model as arguments
#:::::::::::::::::::::::::::::::::::::::::
.my.model <- lm(yield ~ block + N*P*K, npk)
anova_test(.my.model)
#> ANOVA Table (type II tests)
#>
#> Effect DFn DFd F p p<.05 ges
#> 1 block 4 12 4.959 0.014 * 0.623
#> 2 N 1 12 12.259 0.004 * 0.505
#> 3 P 1 12 0.544 0.475 0.043
#> 4 K 1 12 6.166 0.029 * 0.339
#> 5 N:P 1 12 1.378 0.263 0.103
#> 6 N:K 1 12 2.146 0.169 0.152
#> 7 P:K 1 12 0.031 0.863 0.003
#> 8 N:P:K 0 12 NA NA <NA> NA
# Data preparation
mydata <- mtcars %>%
select(mpg, disp, hp, drat, wt, qsec)
head(mydata, 3)
#> mpg disp hp drat wt qsec
#> Mazda RX4 21.0 160 110 3.90 2.620 16.46
#> Mazda RX4 Wag 21.0 160 110 3.90 2.875 17.02
#> Datsun 710 22.8 108 93 3.85 2.320 18.61
# Correlation test between two variables
mydata %>% cor_test(wt, mpg, method = "pearson")
#> # A tibble: 1 x 8
#> var1 var2 cor statistic p conf.low conf.high method
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 wt mpg -0.87 -9.56 1.29e-10 -0.934 -0.744 Pearson
# Correlation of one variable against all
mydata %>% cor_test(mpg, method = "pearson")
#> # A tibble: 5 x 8
#> var1 var2 cor statistic p conf.low conf.high method
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 mpg disp -0.85 -8.75 9.38e-10 -0.923 -0.708 Pearson
#> 2 mpg hp -0.78 -6.74 1.79e- 7 -0.885 -0.586 Pearson
#> 3 mpg drat 0.68 5.10 1.78e- 5 0.436 0.832 Pearson
#> 4 mpg wt -0.87 -9.56 1.29e-10 -0.934 -0.744 Pearson
#> 5 mpg qsec 0.42 2.53 1.71e- 2 0.0820 0.670 Pearson
# Pairwise correlation test between all variables
mydata %>% cor_test(method = "pearson")
#> # A tibble: 36 x 8
#> var1 var2 cor statistic p conf.low conf.high method
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 mpg mpg 1 Inf 0. 1 1 Pearson
#> 2 mpg disp -0.85 -8.75 9.38e-10 -0.923 -0.708 Pearson
#> 3 mpg hp -0.78 -6.74 1.79e- 7 -0.885 -0.586 Pearson
#> 4 mpg drat 0.68 5.10 1.78e- 5 0.436 0.832 Pearson
#> 5 mpg wt -0.87 -9.56 1.29e-10 -0.934 -0.744 Pearson
#> 6 mpg qsec 0.42 2.53 1.71e- 2 0.0820 0.670 Pearson
#> 7 disp mpg -0.85 -8.75 9.38e-10 -0.923 -0.708 Pearson
#> 8 disp disp 1 Inf 0. 1 1 Pearson
#> 9 disp hp 0.79 7.08 7.14e- 8 0.611 0.893 Pearson
#> 10 disp drat -0.71 -5.53 5.28e- 6 -0.849 -0.481 Pearson
#> # … with 26 more rows
# Compute correlation matrix
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat <- mydata %>% cor_mat()
cor.mat
#> # A tibble: 6 x 7
#> rowname mpg disp hp drat wt qsec
#> * <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg 1 -0.85 -0.78 0.68 -0.87 0.42
#> 2 disp -0.85 1 0.79 -0.71 0.89 -0.43
#> 3 hp -0.78 0.79 1 -0.45 0.66 -0.71
#> 4 drat 0.68 -0.71 -0.45 1 -0.71 0.091
#> 5 wt -0.87 0.89 0.66 -0.71 1 -0.17
#> 6 qsec 0.42 -0.43 -0.71 0.091 -0.17 1
# Show the significance levels
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>% cor_get_pval()
#> # A tibble: 6 x 7
#> rowname mpg disp hp drat wt qsec
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mpg 0. 9.38e-10 0.000000179 0.0000178 1.29e- 10 0.0171
#> 2 disp 9.38e-10 0. 0.0000000714 0.00000528 1.22e- 11 0.0131
#> 3 hp 1.79e- 7 7.14e- 8 0 0.00999 4.15e- 5 0.00000577
#> 4 drat 1.78e- 5 5.28e- 6 0.00999 0 4.78e- 6 0.62
#> 5 wt 1.29e-10 1.22e-11 0.0000415 0.00000478 2.27e-236 0.339
#> 6 qsec 1.71e- 2 1.31e- 2 0.00000577 0.62 3.39e- 1 0
# Replacing correlation coefficients by symbols
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_as_symbols() %>%
pull_lower_triangle()
#> rowname mpg disp hp drat wt qsec
#> 1 mpg
#> 2 disp *
#> 3 hp * *
#> 4 drat + + .
#> 5 wt * * + +
#> 6 qsec . . +
# Mark significant correlations
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_mark_significant()
#> rowname mpg disp hp drat wt qsec
#> 1 mpg
#> 2 disp -0.85****
#> 3 hp -0.78**** 0.79****
#> 4 drat 0.68**** -0.71**** -0.45**
#> 5 wt -0.87**** 0.89**** 0.66**** -0.71****
#> 6 qsec 0.42* -0.43* -0.71**** 0.091 -0.17
# Draw correlogram using R base plot
#::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
cor.mat %>%
cor_reorder() %>%
pull_lower_triangle() %>%
cor_plot()