|build| |rtd| |codecov| |pypi| |pyversions|
.. |build| image:: https://github.com/crflynn/stochastic/actions/workflows/build.yml/badge.svg :target: https://github.com/crflynn/stochastic/actions
.. |rtd| image:: https://img.shields.io/readthedocs/stochastic.svg :target: http://stochastic.readthedocs.io/en/latest/
.. |codecov| image:: https://codecov.io/gh/crflynn/stochastic/branch/master/graphs/badge.svg :target: https://codecov.io/gh/crflynn/stochastic
.. |pypi| image:: https://img.shields.io/pypi/v/stochastic.svg :target: https://pypi.python.org/pypi/stochastic
.. |pyversions| image:: https://img.shields.io/pypi/pyversions/stochastic.svg :target: https://pypi.python.org/pypi/stochastic
A python package for generating realizations of stochastic processes.
The stochastic
package is available on pypi and can be installed using pip
.. code-block:: shell
pip install stochastic
Dependencies
Stochastic uses ``numpy`` for many calculations and ``scipy`` for sampling
specific random variables.
Processes
---------
This package offers a number of common discrete-time, continuous-time, and
noise process objects for generating realizations of stochastic processes as
``numpy`` arrays.
The diffusion processes are approximated using the Euler–Maruyama method.
Here are the currently supported processes and their class references within
the package.
* stochastic.processes
* continuous
* BesselProcess
* BrownianBridge
* BrownianExcursion
* BrownianMeander
* BrownianMotion
* CauchyProcess
* FractionalBrownianMotion
* GammaProcess
* GeometricBrownianMotion
* InverseGaussianProcess
* MixedPoissonProcess
* MultifractionalBrownianMotion
* PoissonProcess
* SquaredBesselProcess
* VarianceGammaProcess
* WienerProcess
* diffusion
* DiffusionProcess (generalized)
* ConstantElasticityVarianceProcess
* CoxIngersollRossProcess
* ExtendedVasicekProcess
* OrnsteinUhlenbeckProcess
* VasicekProcess
* discrete
* BernoulliProcess
* ChineseRestaurantProcess
* DirichletProcess
* MarkovChain
* MoranProcess
* RandomWalk
* noise
* BlueNoise
* BrownianNoise
* ColoredNoise
* PinkNoise
* RedNoise
* VioletNoise
* WhiteNoise
* FractionalGaussianNoise
* GaussianNoise
Usage patterns
--------------
Sampling
To use stochastic
, import the process you want and instantiate with the
required parameters. Every process class has a sample
method for generating
realizations. The sample
methods accept a parameter n
for the quantity
of steps in the realization, but others (Poisson, for instance) may take
additional parameters. Parameters can be accessed as attributes of the
instance.
.. code-block:: python
from stochastic.processes.discrete import BernoulliProcess
bp = BernoulliProcess(p=0.6)
s = bp.sample(16)
success_probability = bp.p
Continuous processes provide a default parameter, t
, which indicates the
maximum time of the process realizations. The default value is 1. The sample
method will generate n
equally spaced increments on the
interval [0, t]
.
Sampling at specific times
Some continuous processes also provide a ``sample_at()`` method, in which a
sequence of time values can be passed at which the object will generate a
realization. This method ignores the parameter, ``t``, specified on
instantiation.
.. code-block:: python
from stochastic.processes.continuous import BrownianMotion
bm = BrownianMotion(drift=1, scale=1, t=1)
times = [0, 3, 10, 11, 11.2, 20]
s = bm.sample_at(times)
Sample times
Continuous processes also provide a method times()
which generates the time
values (using numpy.linspace
) corresponding to a realization of n
steps. This is particularly useful for plotting your samples.
.. code-block:: python
import matplotlib.pyplot as plt
from stochastic.processes.continuous import FractionalBrownianMotion
fbm = FractionalBrownianMotion(hurst=0.7, t=1)
s = fbm.sample(32)
times = fbm.times(32)
plt.plot(times, s)
plt.show()
Specifying an algorithm
Some processes provide an optional parameter ``algorithm``, in which one can
specify which algorithm to use to generate the realization using the
``sample()`` or ``sample_at()`` methods. See the documentation for
process-specific implementations.
.. code-block:: python
from stochastic.processes.noise import FractionalGaussianNoise
fgn = FractionalGaussianNoise(hurst=0.6, t=1)
s = fgn.sample(32, algorithm='hosking')