crflynn / stochastic

Generate realizations of stochastic processes in python.
http://stochastic.readthedocs.io/en/stable/
MIT License
456 stars 82 forks source link
probability stochastic stochastic-differential-equations stochastic-processes stochastic-simulation-algorithm stochastic-volatility-models

stochastic

|build| |rtd| |codecov| |pypi| |pyversions|

.. |build| image:: https://github.com/crflynn/stochastic/actions/workflows/build.yml/badge.svg :target: https://github.com/crflynn/stochastic/actions

.. |rtd| image:: https://img.shields.io/readthedocs/stochastic.svg :target: http://stochastic.readthedocs.io/en/latest/

.. |codecov| image:: https://codecov.io/gh/crflynn/stochastic/branch/master/graphs/badge.svg :target: https://codecov.io/gh/crflynn/stochastic

.. |pypi| image:: https://img.shields.io/pypi/v/stochastic.svg :target: https://pypi.python.org/pypi/stochastic

.. |pyversions| image:: https://img.shields.io/pypi/pyversions/stochastic.svg :target: https://pypi.python.org/pypi/stochastic

A python package for generating realizations of stochastic processes.

Installation

The stochastic package is available on pypi and can be installed using pip

.. code-block:: shell

pip install stochastic

Dependencies


Stochastic uses ``numpy`` for many calculations and ``scipy`` for sampling
specific random variables.

Processes
---------

This package offers a number of common discrete-time, continuous-time, and
noise process objects for generating realizations of stochastic processes as
``numpy`` arrays.

The diffusion processes are approximated using the Euler–Maruyama method.

Here are the currently supported processes and their class references within
the package.

* stochastic.processes

    * continuous

        * BesselProcess
        * BrownianBridge
        * BrownianExcursion
        * BrownianMeander
        * BrownianMotion
        * CauchyProcess
        * FractionalBrownianMotion
        * GammaProcess
        * GeometricBrownianMotion
        * InverseGaussianProcess
        * MixedPoissonProcess
        * MultifractionalBrownianMotion
        * PoissonProcess
        * SquaredBesselProcess
        * VarianceGammaProcess
        * WienerProcess

    * diffusion

        * DiffusionProcess (generalized)
        * ConstantElasticityVarianceProcess
        * CoxIngersollRossProcess
        * ExtendedVasicekProcess
        * OrnsteinUhlenbeckProcess
        * VasicekProcess

    * discrete

        * BernoulliProcess
        * ChineseRestaurantProcess
        * DirichletProcess
        * MarkovChain
        * MoranProcess
        * RandomWalk

    * noise

        * BlueNoise
        * BrownianNoise
        * ColoredNoise
        * PinkNoise
        * RedNoise
        * VioletNoise
        * WhiteNoise
        * FractionalGaussianNoise
        * GaussianNoise

Usage patterns
--------------

Sampling

To use stochastic, import the process you want and instantiate with the required parameters. Every process class has a sample method for generating realizations. The sample methods accept a parameter n for the quantity of steps in the realization, but others (Poisson, for instance) may take additional parameters. Parameters can be accessed as attributes of the instance.

.. code-block:: python

from stochastic.processes.discrete import BernoulliProcess

bp = BernoulliProcess(p=0.6)
s = bp.sample(16)
success_probability = bp.p

Continuous processes provide a default parameter, t, which indicates the maximum time of the process realizations. The default value is 1. The sample method will generate n equally spaced increments on the interval [0, t].

Sampling at specific times


Some continuous processes also provide a ``sample_at()`` method, in which a
sequence of time values can be passed at which the object will generate a
realization. This method ignores the parameter, ``t``, specified on
instantiation.

.. code-block:: python

    from stochastic.processes.continuous import BrownianMotion

    bm = BrownianMotion(drift=1, scale=1, t=1)
    times = [0, 3, 10, 11, 11.2, 20]
    s = bm.sample_at(times)

Sample times

Continuous processes also provide a method times() which generates the time values (using numpy.linspace) corresponding to a realization of n steps. This is particularly useful for plotting your samples.

.. code-block:: python

import matplotlib.pyplot as plt
from stochastic.processes.continuous import FractionalBrownianMotion

fbm = FractionalBrownianMotion(hurst=0.7, t=1)
s = fbm.sample(32)
times = fbm.times(32)

plt.plot(times, s)
plt.show()

Specifying an algorithm



Some processes provide an optional parameter ``algorithm``, in which one can
specify which algorithm to use to generate the realization using the
``sample()`` or ``sample_at()`` methods. See the documentation for
process-specific implementations.

.. code-block:: python

    from stochastic.processes.noise import FractionalGaussianNoise

    fgn = FractionalGaussianNoise(hurst=0.6, t=1)
    s = fgn.sample(32, algorithm='hosking')