cuguilke / microexpnet

MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Frontal Face Images
MIT License
139 stars 26 forks source link
deep-learning deep-neural-networks facial-expression-recognition knowledge-distillation machine-learning model-compression tensorflow

MicroExpNet

By Ilke Cugu, Eren Sener, Emre Akbas.

Table of Contents

  1. Introduction
  2. Citation
  3. API
  4. Models

Introduction

MicroExpNet is an extremely small (under 1MB) and fast (1851 FPS on i7 CPU) TensorFlow convolutional neural network model for facial expression recognition (FER) from frontal face images. This repository contains the codes described in the paper "MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images" (https://arxiv.org/abs/1711.07011v4).

Full list of items

Citation

If you use these models in your research, please cite:

@inproceedings{cugu2019microexpnet,
  title={MicroExpNet: An Extremely Small and Fast Model For Expression Recognition From Face Images},
  author={Cugu, Ilke and Sener, Eren and Akbas, Emre},
  booktitle={2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA)},
  pages={1--6},
  year={2019},
  organization={IEEE}
}

API

MicroExpNet(x, y, teacherLogits, lr, nClasses, imgXdim, imgYdim, batchSize, keepProb, temperature, lambda_)

This is the class where the magic happens. Take a look at exampleUsage.py for a quick test drive.

Parameters

Models

We provide pre-trained MicroExpNet models for both CK+ and Oulu-CASIA.

In addition, one can find sample pre-trained teacher models which are derived from the original Keras implementation of Inception_v3:

Labels of the both models

0: neutral, 1: anger, 2: contempt, 3: disgust, 4: fear, 5: happy, 6: sadness, 7: surprise