pip install tensorflow-cpu==2.15.1
Please see issue here
We are actively working on this, thank you for your understanding.
NanoVar is a genomic structural variant (SV) caller that utilizes low-depth long-read sequencing such as Oxford Nanopore Technologies (ONT). It characterizes SVs with using only 4x depth sequencing for homozygous SVs and 8x depth for heterozygous SVs.
NanoVar allows the concurrent repeat element annotation of INS variants using NanoINSight.
To run NanoINSight, simply add "--annotate_ins [species]" when running NanoVar.
nanovar -t 24 -f hg38 --annotate_ins human sample.bam ref.fa working_dir
To understand NanoINSight output files, please visit its repository here.
NanoINSight requires the installation of MAFFT and RepeatMasker. Please refer to here for instructions on how to install them, or install them through Conda as shown below:
pip install nanoinsight
conda install -c bioconda mafft repeatmasker -y
Note: If encountered "numpy.dtype size changed" tensorflow error while running NanoVar, ensure numpy version is <2.0.0 (i.e. pip install numpy 1.26.4).
See wiki for more information.
See CHANGELOG
If you use NanoVar, please cite:
Tham, CY., Tirado-Magallanes, R., Goh, Y. et al. NanoVar: accurate characterization of patients’ genomic structural variants using low-depth nanopore sequencing. Genome Biol. 21, 56 (2020). https://doi.org/10.1186/s13059-020-01968-7
This project is licensed under GNU General Public License - see LICENSE.txt for details.
SV simulation datasets used in the manuscript can be downloaded here. Scripts used for simulation dataset generation and tool performance comparison are available here.
Although NanoVar is provided with a universal model and threshold score, instructions required for building a custom neural-network model is available here.
The inaccurate basecalling of large homopolymer or low complexity DNA regions may result in the false determination of deletion SVs. We advise the use of up-to-date ONT basecallers such as Dorado to minimize this possibility.
For BND SVs, NanoVar is unable to calculate the actual number of SV-opposing reads (normal reads) at the novel adjacency as there are two breakends from distant locations. It is not clear whether the novel adjacency is derived from both or either breakends in cases of balanced and unbalanced variants, and therefore it is not possible to know which breakend location(s) to consider for counting normal reads. Currently, NanoVar approximates the normal read count by the minimum count from either breakend location. Although this helps in capturing unbalanced BNDs, it might lead to some false positives.