daniel03c1 / masked_wavelet_nerf

MIT License
80 stars 4 forks source link

Masked Wavelet Representation for Compact Neural Radiance Fields

Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko†, and Eunbyung Park†, CVPR 2023

Project Page, Paper(arxiv)

Our code is based on TensoRF (https://github.com/apchenstu/TensoRF).

Our method, however, can be applied to any 2D grid-based neural fields.

Tested on Ubuntu 18.04 + Pytorch 1.10.2

0. Requirements

conda create -n MaskDWT python=3.8
conda activate MaskDWT
pip install torch torchvision
pip install tqdm scikit-image opencv-python configargparse lpips imageio-ffmpeg kornia lpips tensorboard

0.1 Installing pytorch_wavelets

git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .

1. Training

python3 train.py --config=configs/chair.txt --use_mask --mask_weight=1e-10 --grid_bit=8 --use_dwt --dwt_level=4

More details can be found in "opt.py"

2. Model Compression

python3 compress.py --compress=1 --compress_levelwise=1 --ckpt=PATH_TO_CHECKPOINT

3. Decompression and Evaluation

python3 compress.py --decompress=1 --decompress_levelwise=1 --config=configs/chair.txt --ckpt=PATH_TO_CHECKPOINT

4. Bibtex

@InProceedings{Rho_2023_CVPR,
    author    = {Rho, Daniel and Lee, Byeonghyeon and Nam, Seungtae and Lee, Joo Chan and Ko, Jong Hwan and Park, Eunbyung},
    title     = {Masked Wavelet Representation for Compact Neural Radiance Fields},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2023},
    pages     = {20680-20690}
}