Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee, Jong Hwan Ko†, and Eunbyung Park†, CVPR 2023
Our code is based on TensoRF (https://github.com/apchenstu/TensoRF).
Our method, however, can be applied to any 2D grid-based neural fields.
Tested on Ubuntu 18.04 + Pytorch 1.10.2
conda create -n MaskDWT python=3.8
conda activate MaskDWT
pip install torch torchvision
pip install tqdm scikit-image opencv-python configargparse lpips imageio-ffmpeg kornia lpips tensorboard
git clone https://github.com/fbcotter/pytorch_wavelets
cd pytorch_wavelets
pip install .
python3 train.py --config=configs/chair.txt --use_mask --mask_weight=1e-10 --grid_bit=8 --use_dwt --dwt_level=4
More details can be found in "opt.py"
python3 compress.py --compress=1 --compress_levelwise=1 --ckpt=PATH_TO_CHECKPOINT
python3 compress.py --decompress=1 --decompress_levelwise=1 --config=configs/chair.txt --ckpt=PATH_TO_CHECKPOINT
@InProceedings{Rho_2023_CVPR,
author = {Rho, Daniel and Lee, Byeonghyeon and Nam, Seungtae and Lee, Joo Chan and Ko, Jong Hwan and Park, Eunbyung},
title = {Masked Wavelet Representation for Compact Neural Radiance Fields},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {20680-20690}
}