Make sure to ask the IDE team for your AWS Key and Secret.
$ pip install awscli
$ aws configure
> AWS Access Key ID: <enter your key>
> AWS Secret Access Key: <enter your secret>
> Default region name: us-east-1
> Default output format: <leave blank>
After this, start R, and:
if(!require(remotes)) {
install.packages("remotes")
}
remotes::install_github("datacamp/dbconnectr")
remotes::install_github("r-dbi/RMySQL") # for MySQL databases
remotes::install_github("r-dbi/RPostgres") # for PostgreSQL databases
For security reasons, we only allow DB connections from our VPN.
library(dbconnectr)
# List all available databases
get_databases()
# Get DBI connection to specific database
conn <- create_connection("main-app")
# Use DBI connection like you normally do
library(DBI)
dbListTables(conn)
# Visit the database documentation
get_docs("main-app")
To avoid the (time costly) fetching of credentials to AWS every time, dbconnectr
allows you to cache the credentials on your local machine:
library(dbconnectr)
# First time is slow
conn <- create_connection("main-app", cache = TRUE)
# Second time is fast
conn <- create_connection("main-app", cache = TRUE)
The aws
executable will not be found when you're working in RStudio (because the PATH
is not properly set). To fix this, open up a terminal to find out the location of the aws
executable:
$ which aws
/Library/Frameworks/Python.framework/Versions/3.6/bin
Next, create a file ~/.Renviron
that adds this bin
folder to the PATH
, e.g.:
PATH="/Library/Frameworks/Python.framework/Versions/3.6/bin:${PATH}"
Note that the exact location of the aws
executable can be different on your system, depending on how you installed the AWS CLI. Now, if you start RStudio and your R session initializes, the folder that contains the aws
executable will be in your PATH
, and you should be able to call aws
commands:
> system2("aws", args = "--version")
aws-cli/1.14.32 Python/3.6.4 Darwin/17.3.0 botocore/1.8.36