datafusion-contrib / bdt

Boring Data Tool
Apache License 2.0
210 stars 20 forks source link
avro convert csv json parquet

Boring Data Tool (bdt) 🤓

Command-line tool for viewing, querying, converting, and comparing files in popular data formats (CSV, Parquet, JSON, and Avro).

Powered by Apache Arrow and DataFusion.

Features

Installation

Rust must be installed first. Follow instructions at https://rustup.rs/.

cargo install bdt

Usage

Boring Data Tool

USAGE:
    bdt <SUBCOMMAND>

FLAGS:
    -h, --help       Prints help information
    -V, --version    Prints version information

SUBCOMMANDS:
    compare              Compare the contents of two files
    convert              Convert a file to a different format
    count                Show the row count of the file
    help                 Prints this message or the help of the given subcommand(s)
    query                Run a SQL query against one or more files
    schema               View schema of a file
    view                 View contents of a file
    view-parquet-meta    View Parquet metadata

Examples

View File Schema

bdt schema /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet
+-----------------------+-----------------------------+-------------+
| column_name           | data_type                   | is_nullable |
+-----------------------+-----------------------------+-------------+
| VendorID              | Int64                       | YES         |
| tpep_pickup_datetime  | Timestamp(Nanosecond, None) | YES         |
| tpep_dropoff_datetime | Timestamp(Nanosecond, None) | YES         |
| passenger_count       | Float64                     | YES         |
| trip_distance         | Float64                     | YES         |
| RatecodeID            | Float64                     | YES         |
| store_and_fwd_flag    | Utf8                        | YES         |
| PULocationID          | Int64                       | YES         |
| DOLocationID          | Int64                       | YES         |
| payment_type          | Int64                       | YES         |
| fare_amount           | Float64                     | YES         |
| extra                 | Float64                     | YES         |
| mta_tax               | Float64                     | YES         |
| tip_amount            | Float64                     | YES         |
| tolls_amount          | Float64                     | YES         |
| improvement_surcharge | Float64                     | YES         |
| total_amount          | Float64                     | YES         |
| congestion_surcharge  | Float64                     | YES         |
| airport_fee           | Float64                     | YES         |
+-----------------------+-----------------------------+-------------+

View File Contents

$ bdt view /path/to/file.parquet --limit 10
+-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+
| t_time_sk | t_time_id        | t_time | t_hour | t_minute | t_second | t_am_pm | t_shift | t_sub_shift | t_meal_time |
+-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+
| 0         | AAAAAAAABAAAAAAA | 0      | 0      | 0        | 0        | AM      | third   | night       |             |
| 1         | AAAAAAAACAAAAAAA | 1      | 0      | 0        | 1        | AM      | third   | night       |             |
| 2         | AAAAAAAADAAAAAAA | 2      | 0      | 0        | 2        | AM      | third   | night       |             |
| 3         | AAAAAAAAEAAAAAAA | 3      | 0      | 0        | 3        | AM      | third   | night       |             |
| 4         | AAAAAAAAFAAAAAAA | 4      | 0      | 0        | 4        | AM      | third   | night       |             |
| 5         | AAAAAAAAGAAAAAAA | 5      | 0      | 0        | 5        | AM      | third   | night       |             |
| 6         | AAAAAAAAHAAAAAAA | 6      | 0      | 0        | 6        | AM      | third   | night       |             |
| 7         | AAAAAAAAIAAAAAAA | 7      | 0      | 0        | 7        | AM      | third   | night       |             |
| 8         | AAAAAAAAJAAAAAAA | 8      | 0      | 0        | 8        | AM      | third   | night       |             |
| 9         | AAAAAAAAKAAAAAAA | 9      | 0      | 0        | 9        | AM      | third   | night       |             |
+-----------+------------------+--------+--------+----------+----------+---------+---------+-------------+-------------+

Run SQL Query

Queries can be run against one or more tables. Table names are inferred from file names.

$ bdt query --table /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet \
  --sql "SELECT COUNT(*) FROM yellow_tripdata_2022_01"
Registering table 'yellow_tripdata_2022_01' for /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet
+-----------------+
| COUNT(UInt8(1)) |
+-----------------+
| 2463931         |
+-----------------+

Use the --tables option to register all files/directories in one directory as tables, and use the --sql-file option to load a query from disk.

$ bdt query --tables /mnt/bigdata/tpch/sf10-parquet/ --sql-file /home/andy/git/sql-benchmarks/sqlbench-h/queries/sf=10/q1.sql`
Registering table 'supplier' for /mnt/bigdata/tpch/sf10-parquet/supplier.parquet
Registering table 'part' for /mnt/bigdata/tpch/sf10-parquet/part.parquet
Registering table 'partsupp' for /mnt/bigdata/tpch/sf10-parquet/partsupp.parquet
Registering table 'nation' for /mnt/bigdata/tpch/sf10-parquet/nation.parquet
Registering table 'region' for /mnt/bigdata/tpch/sf10-parquet/region.parquet
Registering table 'orders' for /mnt/bigdata/tpch/sf10-parquet/orders.parquet
Registering table 'lineitem' for /mnt/bigdata/tpch/sf10-parquet/lineitem.parquet
Registering table 'customer' for /mnt/bigdata/tpch/sf10-parquet/customer.parquet
+--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+
| l_returnflag | l_linestatus | sum_qty      | sum_base_price   | sum_disc_price     | sum_charge           | avg_qty   | avg_price    | avg_disc | count_order |
+--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+
| A            | F            | 377518277.00 | 566065563002.85  | 537758943278.1740  | 559276505545.688411  | 25.500977 | 38237.155374 | 0.050006 | 14804071    |
| N            | F            | 9851614.00   | 14767438399.17   | 14028805792.2114   | 14590490998.366737   | 25.522448 | 38257.810660 | 0.049973 | 385998      |
| N            | O            | 730783087.00 | 1095795289143.27 | 1041001162690.9297 | 1082653834336.561576 | 25.497622 | 38233.198852 | 0.049999 | 28660832    |
| R            | F            | 377732634.00 | 566430710070.73  | 538110604499.8196  | 559634448619.890015  | 25.508381 | 38251.211480 | 0.049996 | 14808177    |
+--------------+--------------+--------------+------------------+--------------------+----------------------+-----------+--------------+----------+-------------+

Query results can also be written to disk by specifying an --output path.

$ bdt query --table /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet \
  --sql "SELECT COUNT(*) FROM yellow_tripdata_2022_01" \
  --output results.csv
Registering table 'yellow_tripdata_2022_01' for /mnt/bigdata/nyctaxi/yellow_tripdata_2022-01.parquet
Writing results in CSV format to results.csv

Convert Parquet to newline-delimited JSON

$ bdt convert /path/to/input.parquet /path/to/output.json
$ cat /path/to/output.json
{"d_date_sk":2415022,"d_date_id":"AAAAAAAAOKJNECAA","d_date":"1900-01-02","d_month_seq":0,"d_week_seq":1,"d_quarter_seq":1,"d_year":1900,"d_dow":1,"d_moy":1,"d_dom":2,"d_qoy":1,"d_fy_year":1900,"d_fy_quarter_seq":1,"d_fy_week_seq":1,"d_day_name":"Monday","d_quarter_name":"1900Q1","d_holiday":"N","d_weekend":"N","d_following_holiday":"Y","d_first_dom":2415021,"d_last_dom":2415020,"d_same_day_ly":2414657,"d_same_day_lq":2414930,"d_current_day":"N","d_current_week":"N","d_current_month":"N","d_current_quarter":"N","d_current_year":"N"}
{"d_date_sk":2415023,"d_date_id":"AAAAAAAAPKJNECAA","d_date":"1900-01-03","d_month_seq":0,"d_week_seq":1,"d_quarter_seq":1,"d_year":1900,"d_dow":2,"d_moy":1,"d_dom":3,"d_qoy":1,"d_fy_year":1900,"d_fy_quarter_seq":1,"d_fy_week_seq":1,"d_day_name":"Tuesday","d_quarter_name":"1900Q1","d_holiday":"N","d_weekend":"N","d_following_holiday":"N","d_first_dom":2415021,"d_last_dom":2415020,"d_same_day_ly":2414658,"d_same_day_lq":2414931,"d_current_day":"N","d_current_week":"N","d_current_month":"N","d_current_quarter":"N","d_current_year":"N"}

View Parquet File Metadata

$ bdt view-parquet-meta /mnt/bigdata/tpcds/sf100-parquet/store_sales.parquet/part-00000-cff04137-32a6-4e5b-811a-668f5d4b1802-c000.snappy.parquet

+------------+----------------------------------------------------------------------------+
| Key        | Value                                                                      |
+------------+----------------------------------------------------------------------------+
| Version    | 1                                                                          |
| Created By | parquet-mr version 1.10.1 (build a89df8f9932b6ef6633d06069e50c9b7970bebd1) |
| Rows       | 40016                                                                      |
| Row Groups | 1                                                                          |
+------------+----------------------------------------------------------------------------+

Row Group 0 of 1 contains 40016 rows and has 190952 bytes:

+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+
| Column Name           | Logical Type | Physical Type | Distinct Values | Nulls | Min                                                 | Max                                |
+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+
| cd_demo_sk            | N/A          | INT32         | N/A             | 0     | 1520641                                             | 1560656                            |
| cd_gender             | N/A          | BYTE_ARRAY    | N/A             | 0     | [70]                                                | [77]                               |
| cd_marital_status     | N/A          | BYTE_ARRAY    | N/A             | 0     | [68]                                                | [87]                               |
| cd_education_status   | N/A          | BYTE_ARRAY    | N/A             | 0     | [50, 32, 121, 114, 32, 68, 101, 103, 114, 101, 101] | [85, 110, 107, 110, 111, 119, 110] |
| cd_purchase_estimate  | N/A          | INT32         | N/A             | 0     | 500                                                 | 10000                              |
| cd_credit_rating      | N/A          | BYTE_ARRAY    | N/A             | 0     | [71, 111, 111, 100]                                 | [85, 110, 107, 110, 111, 119, 110] |
| cd_dep_count          | N/A          | INT32         | N/A             | 0     | 0                                                   | 6                                  |
| cd_dep_employed_count | N/A          | INT32         | N/A             | 0     | 3                                                   | 4                                  |
| cd_dep_college_count  | N/A          | INT32         | N/A             | 0     | 5                                                   | 5                                  |
+-----------------------+--------------+---------------+-----------------+-------+-----------------------------------------------------+------------------------------------+