::
_ _ _
___| |_ __ _| |_ ___ ___ ___ _ _ _ __ | |_ ___ _ __
/ __| __/ _` | __/ __|/ __/ _ \| | | | '_ \| __/ _ \ '__|
\__ \ || (_| | |_\__ \ (_| (_) | |_| | | | | || __/ |
|___/\__\__,_|\__|___/\___\___/ \__,_|_| |_|\__\___|_|
StatsCounter is a GNU Licensed, statistics powered version
of Python's standard library Counter
class. It attaches
several helpful methods that can be used to make your
data-driven uses a breeze.
As a histogram
.. code-block:: python
>>> import statscounter as stats
>>> letter_freq = stats.StatsCounter(a=1, b=2, c=3, d=4, e=4, f=6)
>>> letter_freq.mean() # average frequency
3.3333333333333335
>>> letter_freq.mode() # most frequent element
4
>>> letter_freq.median() # the median number (avg if even # of items)
3.5
>>> letter_freq.variance() # sample variance
3.066666666666667
>>> letter_freq.stdev() # sample standard deviation
1.7511900715418263
>>> letter_freq.pvariance() # population variance
2.555555555555556
>>> letter_freq.pstdev() # population std. dev.
1.5986105077709065
>>> letter_freq.max() # the maximum value
6
>>> letter_freq.argmax() # the argument yielding the maximum value
"f"
As a utility
.. code-block:: python
>>> import statscounter as stats
>>> stats.mean([1, 2, 3, 4, 4, 6]) # average frequency
3.3333333333333335
>>> stats.mode([1, 2, 3, 4, 4, 6]) # most frequent element
4
>>> stats.median([1, 2, 3, 4, 4, 6]) # the median number (avg if even # of items)
3.5
>>> stats.variance([1, 2, 3, 4, 4, 6]) # sample variance
3.066666666666667
>>> stats.stdev([1, 2, 3, 4, 4, 6]) # sample standard deviation
1.7511900715418263
>>> stats.pvariance([1, 2, 3, 4, 4, 6]) # population variance
2.555555555555556
>>> stats.pstdev([1, 2, 3, 4, 4, 6]) # population std. dev.
1.5986105077709065