This client library provides a simplified way to interact with Data API for AstraDB or local instances. For detailed documentation, each operation comes with a detailed description and examples.
astra-db-ts
is the equivalent for typescriptastrapy
is the equivalent in pythonThis library is under development and is available in Maven Central. You can build it locally and install it in your local repository.
java --version
mvn -version
Docker is an open-source project that automates the deployment of software applications inside containers by providing an additional layer of abstraction and automation of OS-level virtualization on Linux.
git clone git@github.com:datastax/astra-db-java.git
Note: You should skip the tests if you want to speed up the build, to run the test you need to have a bit of setup:
- An environment variable
ASTRA_DB_APPLICATION_TOKEN
with your an Organization Administrator Astra token (PROD)- An environment variable
ASTRA_DB_APPLICATION_TOKEN_DEV
with your an Organization Administrator Astra token (DEV)- A running Data API locally with docker (see the
docker-compose.yml
in the root of the project)
mvn clean install -Dtest.skipped=true
Google
or Github
account. It is free to use. There is free forever tiers of up to 25$ of consumption every month.If you are creating a new account, you will be brought to the DB-creation form directly.
[Create Database]
button on the right.Field | Description |
---|---|
Vector Database vs Serverless Database | Choose Vector Database In june 2023, Cassandra introduced the support of vector search to enable Generative AI use cases. |
Database name | It does not need to be unique, is not used to initialize a connection, and is only a label (keep it between 2 and 50 characters). It is recommended to have a database for each of your applications. The free tier is limited to 5 databases. |
Cloud Provider | Choose whatever you like. Click a cloud provider logo, pick an Area in the list and finally pick a region. We recommend choosing a region that is closest to you to reduce latency. In free tier, there is very little difference. |
Cloud Region | Pick region close to you available for selected cloud provider and your plan. |
If all fields are filled properly, clicking the "Create Database" button will start the process.
It should take a couple of minutes for your database to become Active
.
To connect to your database, you need the API Endpoint and a token. The api endpoint is available on the database screen, there is a little icon to copy the URL in your clipboard. (it should look like https://<db-id>-<db-region>.apps.astra.datastax.com
).
To get a token click the [Generate Token]
button on the right. It will generate a token that you can copy to your clipboard.
Add the following dependency to your pom.xml
file:
<dependency>
<groupId>com.datastax.astra</groupId>
<artifactId>astra-db-java</artifactId>
<version>1.3.0</version>
</dependency>
Here is a sample class that demonstrates how to use the library:
import com.datastax.astra.client.DataAPIClient;
import com.datastax.astra.client.collections.Collection;
import com.datastax.astra.client.databases.Database;
import com.datastax.astra.client.collections.documents.Document;
import com.datastax.astra.client.core.paging.FindIterable;
import java.util.List;
import static com.datastax.astra.client.core.query.Filters.eq;
import static com.datastax.astra.client.core.vector.SimilarityMetric.cosine;
public class GettingStarted {
public static void main(String[] args) {
// Initializing client with a token
DataAPIClient client = new DataAPIClient("my_token");
// Accessing the Database through the HTTP endpoint
Database db = client.getDatabase("http://db-region.apps.astra.datastax.com");
// Create collection with vector support
Collection<Document> col = db.createCollection("demo", 2, cosine);
// Insert records
col.insertMany(List.of(
new Document("doc1").vector(new float[]{.1f, 0.2f}).append("key", "value1"),
new Document().id("doc2").vector(new float[]{.2f, 0.4f}).append("hello", "world"),
new Document("doc3").vector(new float[]{.5f, 0.6f}).append("key", "value1"))
);
// Search
FindIterable<Document> docs = col.find(
eq("key", "value1"), // metadata filter
new float[]{.5f, .5f}, //vector
10); // maxRecord
// Iterate and print your results
for (Document doc : docs) System.out.println(doc);
}
}
docker-compose up -d
docker-compose -f docker-compose-hcd.yml up -d
docker-compose ps
Output
NAME IMAGE COMMAND astra-db-java-coordinator-1 stargateio/coordinator-dse-next:v2.1.0-BETA-9 "./starctl" astra-db-java-jsonapi-1 stargateio/jsonapi:v1.0.6
Field | Description |
---|---|
Data API Spec | http://localhost:8181/swagger-ui/#/ |
Data API Endpoint | http://localhost:8181 |
Token Header Key | Token |
Token Header Value | Cassandra:Y2Fzc2FuZHJh:Y2Fzc2FuZHJh (aka Cassandra:Base64(userName):Base64(password) ) |
Authentication API Spec (before 1.0.6) | http://localhost:8081/swagger-ui/#/ |
Field | Url | Description |
---|---|---|
Namespace | /v1/ |
Interact with namespaces (not available in Astra) |
Data API Endpoint | /v1/{namespace} |
Interact with collections of a namespace |
Token Header Key | /v1/{namespace}/{collection} |
Interact with documents of a collection |
curl -X 'POST' \
'http://localhost:8181/v1' \
-H 'accept: application/json' \
-H 'Token: Cassandra:Y2Fzc2FuZHJh:Y2Fzc2FuZHJh' \
-H 'Content-Type: application/json' \
-d '{
"createNamespace": {
"name": "default_keyspace"
}
}'
public class QuickStartLocal {
public static void main(String[] args) {
// Create a token
String token = new UsernamePasswordTokenProvider("cassandra", "cassandra").getToken();
System.out.println("Token: " + token);
// Initialize the client
DataAPIClient client = new DataAPIClient(token, builder().withDestination(CASSANDRA).build());
System.out.println("Connected to Data API");
// Create a default keyspace
((DataAPIDatabaseAdmin) client
.getDatabase(dataApiUrl)
.getDatabaseAdmin()).createNamespace(keyspaceName, NamespaceOptions.simpleStrategy(1));
System.out.println("Keyspace created ");
Database db = client.getDatabase("http://localhost:8181", "default_keyspace");
System.out.println("Connected to Database");
// Create a collection. The default similarity metric is cosine.
Collection<Document> collection = db.createCollection("simple", 5, COSINE);
System.out.println("Created a Collection simple");
// Create a collection with Vector embeddings OPEN AI
Collection<Document> collectionLyrics = db.createCollection("vector", CollectionOptions.builder()
.vectorSimilarity(SimilarityMetric.COSINE)
.vectorDimension(1536)
.vectorize("openai", "text-embedding-3-small")
.build(),
new CommandOptions<>().embeddingAPIKey("sk-....."));
}
}
This is an the organization of the different classes of the framework.
For more information use the JAVADOC documentation
The examples
directory contains more examples on how to use the library.