davidsonic / Interpretable_CNN

This repository is deprecated, please go to https://github.com/davidsonic/Interpretable_CNNs_via_Feedforward_Design
15 stars 5 forks source link

Interpretable_CNN

This part contains the code for adversarial attack in the paper Interpretable Convolutional Neural Networks via Feed Forward Design, maintained by Jiali Duan and Min Zhang.

Table of Content

cifar_keras.py:
  --batch_size: Size of training batches
    (default: '128')
    (an integer)
  --filename: Checkpoint filename.
    (default: 'FF_init_model.ckpt')
  --learning_rate: Learning rate for training
    (default: '0.001')
    (a number)
  --[no]load_model: Load saved model or train.
    (default: 'true')
  --method: Adversarial attack method
    (default: 'FGSM')
  --nb_epochs: Number of epochs to train model
    (default: '40')
    (an integer)
  --train_dir: Directory where to save model.
    (default: 'cifar_ff_model')