A simple Python API for Investopedia's stock simulator games.
Currently you can programmatically:
To use this API, there are a few dependencies that you will need to install. See the below sections for an explanation of each.
This API is intended to be used for writing Python programs to automate trades in the Investopedia Stock Simulator, therefore you should have Python installed on your system. I recommend using Python 3.12.2 or later to avoid running into issues or other problems. You can download Python here.
This API is not currently hosted as a package anywhere, so you'll need to download the code directly from GitHub to use it. Download and install the latest version of Git on your system and run the following in a terminal to download a copy of this repository:
git clone https://github.com/dchrostowski/investopedia_simulator_api.git/
Alternatively, you can just download a zipped archive of the source code directly from this project's GitHub page and unzip it somewhere on your filesystem. To do this, click on the green Code button and select Download ZIP.
Node.js is utilized to facilitate logging in to the simulator with a virtual web browser and fetching authentication tokens. Download and install the latest version of Node.js on your system here..
Once all dependencies are installed, you will need to use pip to install supplementary Python packages to run your code with the API. Open a terminal on your system and navigate to where you downloaded this code:
cd path/to/investopedia_simulator_api
Next run the following command to install the supplementary packages:
pip install -r ./requirements.txt
Once all the required packages are installed, you will need to provide your login credentials for the Investopedia Stock Simulator. Rename the credentials_example.json
file to credentials.json
, open it, and replace the username and password values with your actual username and password for logging in to Investopedia. Make sure you leave the double quotes intaact.
Finally, try running the provided example.py
file. This example.py
file is a usage example of the API. Feel free to modify it as you see fit for your needs:
python example.py
from investopedia_api import InvestopediaApi
import json
from datetime import datetime, timedelta
from api_models import OptionScope
from trade_common import OrderLimit, TransactionType, Expiration, StockTrade, OptionTrade
credentials = {}
with open('credentials.json') as ifh:
credentials = json.load(ifh)
# look at credentials_example.json
# credentials = {"username": "you@example.org", "password": "yourpassword" }
client = InvestopediaApi(credentials)
p = client.portfolio
print("\nPortfolio Details")
print("-------------------------------------------------")
print("Portfolio Value: %s" % p.account_value)
print("Cash: %s" % p.cash)
print("Buying Power: %s" % p.buying_power)
print("Annual Return Percent: %s" % p.annual_return_pct)
print("-------------------------------------------------")
print("\nOpen Orders:")
# To cancel a pending trade, run open_order.cancel()
for open_order in p.open_orders:
print("-------------------------------------------------")
print("Trade Type: %s" % open_order.trade_type)
print("Symbol: %s" % open_order.symbol)
print("Quantity: %s" % open_order.quantity)
print("Price: %s" % open_order.order_price)
print("-------------------------------------------------")
print("-------------------------------------------------")
stock_portfolio = p.stock_portfolio
short_portfolio = p.short_portfolio
option_portfolio = p.option_portfolio
print("\nStock Portfolio Details:")
print("-------------------------------------------------")
print("Market Value: %s" % p.stock_portfolio.market_value)
print("Today's Gain: %s (%s%%)" % (p.stock_portfolio.day_gain_dollar, p.stock_portfolio.day_gain_percent))
print("Total Gain: %s (%s%%)" % (p.stock_portfolio.total_gain_dollar, p.stock_portfolio.total_gain_percent))
print("-------------------------------------------------")
print("\nLong Positions:")
for position in p.stock_portfolio:
print("-------------------------------------------------")
print("Company: %s (%s)" % (position.description, position.symbol))
print("Shares: %s" % position.quantity)
print("Purchase Price: %s" % position.purchase_price)
print("Current Price: %s" % position.current_price)
print("Today's Gain: %s (%s%%)" % (position.day_gain_dollar, position.day_gain_percent))
print("Total Gain: %s (%s%%)" % (position.total_gain_dollar, position.total_gain_percent))
print("Market/Total Value: %s" % position.market_value)
print("\t------------------------------")
print("\tQuote")
print("\t------------------------------")
quote = position.quote
for k,v in quote.__dict__.items():
print("\t%s: %s" % (k,v))
print("\t------------------------------")
print("-------------------------------------------------")
print("\nShort Positions:")
for position in p.short_portfolio:
print("-------------------------------------------------")
print("Company: %s (%s)" % (position.description, position.symbol))
print("Shares: %s" % position.quantity)
print("Purchase Price: %s" % position.purchase_price)
print("Current Price: %s" % position.current_price)
print("Today's Gain: %s (%s%%)" % (position.day_gain_dollar, position.day_gain_percent))
print("Total Gain: %s (%s%%)" % (position.total_gain_dollar, position.total_gain_percent))
print("Market/Total Value: %s" % position.market_value)
print("\t------------------------------")
print("\tQuote")
print("\t------------------------------")
quote = position.quote
for k,v in quote.__dict__.items():
print("\t%s: %s" % (k,v))
print("\t------------------------------")
print("-------------------------------------------------")
print("\nOption Positions:")
for position in p.option_portfolio:
print("-------------------------------------------------")
print("Company: %s (%s)" % (position.description, position.underlying_symbol))
print("Symbol: %s" % position.symbol)
print("Contracts: %s" % position.quantity)
print("Purchase Price: %s" % position.purchase_price)
print("Current Price: %s" % position.current_price)
print("Today's Gain: %s (%s%%)" % (position.day_gain_dollar, position.day_gain_percent))
print("Total Gain: %s (%s%%)" % (position.total_gain_dollar, position.total_gain_percent))
print("Market/Total Value: %s" % position.market_value)
print("\t------------------------------")
print("\tQuote")
print("\t------------------------------")
quote = position.quote
for k,v in quote.__dict__.items():
print("\t%s: %s" % (k,v))
print("\t------------------------------")
print("-------------------------------------------------")
# Make a stock trade
# Buy 2 shares of GOOG with limit $100 and no expiration
tt1 = TransactionType.BUY
ol1 = OrderLimit.LIMIT(100)
exp1 = Expiration.GOOD_UNTIL_CANCELLED()
trade1 = StockTrade(portfolio_id=p.portfolio_id, symbol="GOOG", quantity=2, transaction_type=tt1, order_limit=ol1, expiration=exp1)
trade1.validate()
trade1.execute()
# Buy 3 shares of AAPL at market value with expiration set to end of day
# defaults order_limit to OrderLimit.MARKET() and expiration to Expiration.END_OF_DAY())
trade2 = StockTrade(portfolio_id=p.portfolio_id, symbol='AAPL', quantity=3, transaction_type=TransactionType.BUY)
trade2.validate()
trade2.execute()
# short sell 1 share of AMZN
trade3 = StockTrade(portfolio_id=p.portfolio_id, symbol='AMZN', quantity=1, transaction_type=TransactionType.SELL_SHORT)
trade3.validate()
trade3.execute()
client.refresh_portfolio()
p = client.portfolio
for open_order in p.open_orders:
if open_order.symbol == 'GOOG' and open_order.quantity == 2:
# cancel GOOG trade
open_order.cancel()
if open_order.symbol == 'AAPL' and open_order.quantity == 3:
# cancel AAPL trade
open_order.cancel()
if open_order.symbol == 'AMZN' and open_order.quantity == 1:
# cancel AMZN trade
open_order.cancel()
stock_portfolio = p.stock_portfolio
if len(p.stock_portfolio) > 0:
# first long position in portfolio
first_long_position = p.stock_portfolio[0]
symbol = first_long_position.symbol
quantity = first_long_position.quantity
# execute trade to sell position in portfolio
first_long_position.sell()
client.refresh_portfolio()
p = client.portfolio
for oo in p.open_orders:
if oo.symbol == symbol and oo.quantity == quantity:
# cancel trade to sell first position in portfolio
oo.cancel()
short_portfolio = p.short_portfolio
if len(p.short_portfolio) > 0:
# first short position in portfolio
first_short_position = p.short_portfolio[0]
symbol = first_short_position.symbol
quantity = first_short_position.quantity
# execute trade to cover position in portfolio
first_short_position.cover()
client.refresh_portfolio()
p = client.portfolio
for oo in p.open_orders:
# cancel cover trade you just made
if oo.symbol == symbol and oo.quantity == quantity:
# cancel trade to cover first position in portfolio
oo.cancel()
if len(p.option_portfolio) > 0:
first_option_contract = p.option_portfolio[0]
symbol = first_option_contract.symbol
quantity = first_option_contract.quantity
# close out first option contract in portfolio
first_option_contract.close()
client.refresh_portfolio()
p = client.portfolio
for oo in p.open_orders:
# cancel order to close out contract
if oo.symbol == symbol and oo.quantity == quantity:
oo.cancel()
# Gets all available option contracts for AAPL
oc = client.get_option_chain('AAPL')
all_options = oc.all()
print("There are %s available option contracts for AAPL" % len(all_options))
two_weeks_from_today = datetime.now() + timedelta(days=14)
print("AAPL in-the-money put options expiring within two weeks:")
put_options_near_expiration_itm = oc.search(before=two_weeks_from_today, puts=True, calls=False, scope=OptionScope.IN_THE_MONEY)
for option in put_options_near_expiration_itm:
print("%s:\n\tbid: %s\n\task: %s\n\tlast price: %s\n\texpires:%s" % (option.symbol, option.bid, option.ask, option.last, option.expiration.strftime("%m/%d/%Y") ))
option_to_buy = put_options_near_expiration_itm[0]
trade4 = OptionTrade(portfolio_id=p.portfolio_id, symbol=option_to_buy.symbol, quantity=1, transaction_type=TransactionType.BUY)
trade4.validate()
trade4.execute()
client.refresh_portfolio()
p = client.portfolio
for oo in p.open_orders:
if oo.symbol == option_to_buy.symbol:
oo.cancel()