dddb11 / MVSS-Net

Unofficial implementation of MVSS-Net (ICCV 2021) with Pytorch including training code.
68 stars 9 forks source link
iml mvss-net pytorch unofficial

Unofficial MVSS-Net (ICCV 2021) reproducing with PyTorch

Powered by GitHub repo size GitHub Ask Me Anything ! visitors

Unofficial implementation of the MVSS-Net, which was proposed in ICCV 2021 by Chengbo Dong et al, includes code for training! This unofficial implementation is supported by the DICA Lab of Sichuan University.

The original repo is lacking the training code, links are here: OFFICIAL MVSS-Net link we tried our best to reproduce the result of the model.

Foreword

ALERT: Although this method may seem like the current SOTA model, but the current results indicate that there are many doubts in this paper. We do not recommend using it as a replication model for the target or a model for learning when entering the field for the following reasons:

You could discuss all phenomenon and stand together with researchers through these links: Zhihu(a Chinese forum); Issues of the official repo.

Enviroment

Ubuntu 18.04.5 LTS

Python 3.9.15

PyTorch 1.10.0 + cuda11.1

Detail python librarys can found in requirements.txt

Quick Start

Introduction

Still on Working...

Files in the repo

Still on Working...

Some Comments

Still on Working...

Result

We trained for 200 epochs and used decay, and finally selected the best data for each epoch on each dataset.Here's the result.Please note that these are only approximate results and we did not make any further adjustments, so they should be taken as a reference only.\ CASIAv1: {'pixel_f1': 0.43, 'acc': 0.69, 'sen': 0.75, 'spe': 0.63, 'imagelevel_f1': 0.68, 'img_auc': 0.78, 'com_f1': 0.53, 'epoch': '11_end.pth'} {'pixel_f1': 0.4, 'acc': 0.74, 'sen': 0.55, 'spe': 0.95, 'imagelevel_f1': 0.7, 'img_auc': 0.8, 'com_f1': 0.51, 'epoch': '40_end.pth'}

COVERAGE: {'pixel_f1': 0.33, 'acc': 0.52, 'sen': 0.96, 'spe': 0.08, 'imagelevel_f1': 0.15, 'img_auc': 0.56, 'com_f1': 0.2, 'epoch': '11_end.pth'} {'pixel_f1': 0.13, 'acc': 0.56, 'sen': 0.59, 'spe': 0.53, 'imagelevel_f1': 0.56, 'img_auc': 0.59, 'com_f1': 0.21, 'epoch': '21_end.pth'} {'pixel_f1': 0.22, 'acc': 0.54, 'sen': 0.81, 'spe': 0.28, 'imagelevel_f1': 0.42, 'img_auc': 0.55, 'com_f1': 0.29, 'epoch': '7_end.pth'}

Columbia: {'pixel_f1': 0.44, 'acc': 0.66, 'sen': 0.98, 'spe': 0.36, 'imagelevel_f1': 0.52, 'img_auc': 0.84, 'com_f1': 0.48, 'epoch': '11_end.pth'} {'pixel_f1': 0.2, 'acc': 0.81, 'sen': 0.86, 'spe': 0.77, 'imagelevel_f1': 0.81, 'img_auc': 0.88, 'com_f1': 0.32, 'epoch': '35_end.pth'}

NIST16: {'pixel_f1': 0.2, 'acc': 0.66, 'sen': 0.66, 'spe': 0.0, 'imagelevel_f1': 0.0, 'img_auc': 0.0, 'com_f1': 0.0, 'epoch': '3_end.pth'}

Links

If you want to train this Model with the CASIAv2 dataset, we provide a revised version of CASIAv2 datasets, which corrected several mistakes in the original datasets provided by the author. Details can find in the link shown below:

Readme Card

Cite

[1] Chen, X., Dong, C., Ji, J., Cao, J., & Li, X. (2021). Image Manipulation Detection by Multi-View Multi-Scale Supervision. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), 14165–14173. https://doi.org/10.1109/ICCV48922.2021.01392