deel-ai / xplique

👋 Xplique is a Neural Networks Explainability Toolbox
https://deel-ai.github.io/xplique
Other
639 stars 52 forks source link
explainable-ai explainable-ml interpretability xai
Xplique


PyLint Tox Pypi Pepy


🦊 Xplique (pronounced \ɛks.plik\) is a Python toolkit dedicated to explainability. The goal of this library is to gather the state of the art of Explainable AI to help you understand your complex neural network models. Originally built for Tensorflow's model it also works for PyTorch models partially.
📘 Explore Xplique docs | Explore Xplique tutorials 🔥

Attributions · Concept · Feature Visualization · Metrics . Example-based

[!IMPORTANT]
With the release of Keras 3.X since TensorFlow 2.16, some methods may not function as expected. We are actively working on a fix. In the meantime, we recommend using TensorFlow 2.15 or earlier versions for optimal compatibility.

The library is composed of several modules, the Attributions Methods module implements various methods (e.g Saliency, Grad-CAM, Integrated-Gradients...), with explanations, examples and links to official papers. The Feature Visualization module allows to see how neural networks build their understanding of images by finding inputs that maximize neurons, channels, layers or compositions of these elements. The Concepts module allows you to extract human concepts from a model and to test their usefulness with respect to a class. Finally, the Metrics module covers the current metrics used in explainability. Used in conjunction with the Attribution Methods module, it allows you to test the different methods or evaluate the explanations of a model.


[!NOTE]
We are proud to announce the release of the Example-based module! This module is dedicated to methods that explain a model by retrieving relevant examples from a dataset. It includes methods that belong to different families: similar examples, contrastive (counter-factuals and semi-factuals) examples, and prototypes (as concepts based methods have a dedicated sections).

🔥 Tutorials

We propose some Hands-on tutorials to get familiar with the library and its api: - [**Attribution Methods**: Getting started](https://colab.research.google.com/drive/1XproaVxXjO9nrBSyyy7BuKJ1vy21iHs2) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1XproaVxXjO9nrBSyyy7BuKJ1vy21iHs2)

- [**Attribution Methods**: Sanity checks paper](https://colab.research.google.com/drive/1uJOmAg6RjlOIJj6SWN9sYRamBdHAuyaS) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1uJOmAg6RjlOIJj6SWN9sYRamBdHAuyaS) - [**Attribution Methods**: Tabular data and Regression](https://colab.research.google.com/drive/1pjDJmAa9oeSquYtbYh6tksU6eTmObIcq) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1pjDJmAa9oeSquYtbYh6tksU6eTmObIcq) - [**Attribution Methods**: Object Detection](https://colab.research.google.com/drive/1X3Yq7BduMKqTA0XEheoVIpOo3IvOrzWL) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1X3Yq7BduMKqTA0XEheoVIpOo3IvOrzWL) - [**Attribution Methods**: Semantic Segmentation](https://colab.research.google.com/drive/1AHg7KO1fCOX5nZLGZfxkZ2-DLPPdSfbX) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1AHg7KO1fCOX5nZLGZfxkZ2-DLPPdSfbX) - [**FORGRad**: Gradient strikes back with FORGrad](https://colab.research.google.com/drive/1ibLzn7r9QQIEmZxApObowzx8n9ukinYB) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ibLzn7r9QQIEmZxApObowzx8n9ukinYB) - [**Attribution Methods**: Metrics](https://colab.research.google.com/drive/1WEpVpFSq-oL1Ejugr8Ojb3tcbqXIOPBg) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1WEpVpFSq-oL1Ejugr8Ojb3tcbqXIOPBg)

- [**PyTorch models**: Getting started](https://colab.research.google.com/drive/1bMlO29_0K3YnTQBbbyKQyRfo8YjvDbhe) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bMlO29_0K3YnTQBbbyKQyRfo8YjvDbhe) - [**Concepts Methods**: Testing with Concept Activation Vectors](https://colab.research.google.com/drive/1iuEz46ZjgG97vTBH8p-vod3y14UETvVE) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1iuEz46ZjgG97vTBH8p-vod3y14UETvVE)

- [**Concepts Methods**: CRAFT: Getting started on Tensorflow](https://colab.research.google.com/drive/1jmyhb89Bdz7H4G2KfK8uEVbSC-C_aht_) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jmyhb89Bdz7H4G2KfK8uEVbSC-C_aht_) - [**Concepts Methods**: CRAFT: Getting started on Pytorch](https://colab.research.google.com/drive/16Jn2pQy4gi2qQYZFnuW6ZNtVAYiNyJHO) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/16Jn2pQy4gi2qQYZFnuW6ZNtVAYiNyJHO)

- [**Feature Visualization**: Getting started](https://colab.research.google.com/drive/1st43K9AH-UL4eZM1S4QdyrOi7Epa5K8v) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1st43K9AH-UL4eZM1S4QdyrOi7Epa5K8v) - [**Modern Feature Visualization with MaCo**: Getting started](https://colab.research.google.com/drive/1l0kag1o-qMY4NCbWuAwnuzkzd9sf92ic) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1l0kag1o-qMY4NCbWuAwnuzkzd9sf92ic)

- [**Example-based Methods**: Getting started](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) You can find a certain number of [**other practical tutorials just here**](https://github.com/deel-ai/xplique/blob/master/TUTORIALS.md). This section is actively developed and more contents will be included. We will try to cover all the possible usage of the library, feel free to contact us if you have any suggestions or recommendations towards tutorials you would like to see.

🚀 Quick Start

Xplique requires a version of python higher than 3.7 and several libraries including Tensorflow and Numpy. Installation can be done using Pypi:

pip install xplique

Now that Xplique is installed, here are basic examples of what you can do with the available modules.

Attributions Methods Let's start with a simple example, by computing Grad-CAM for several images (or a complete dataset) on a trained model. ```python from xplique.attributions import GradCAM # load images, labels and model # ... explainer = GradCAM(model) explanations = explainer.explain(images, labels) # or just `explainer(images, labels)` ``` All attributions methods share a common API described [in the attributions API documentation](https://deel-ai.github.io/xplique/latest/api/attributions/api_attributions/).
Attributions Metrics In order to measure if the explanations provided by our method are faithful (it reflects well the functioning of the model) we can use a fidelity metric such as Deletion ```python from xplique.attributions import GradCAM from xplique.metrics import Deletion # load images, labels and model # ... explainer = GradCAM(model) explanations = explainer(inputs, labels) metric = Deletion(model, inputs, labels) score_grad_cam = metric(explanations) ``` All attributions metrics share a common API. You can find out more about it [here](https://deel-ai.github.io/xplique/latest/api/attributions/metrics/api_metrics/).
Concepts Extraction ### CAV Concerning the concept-based methods, we can for example extract a concept vector from a layer of a model. In order to do this, we use two datasets, one containing inputs containing the concept: `positive_samples`, the other containing other entries which do not contain the concept: `negative_samples`. ```python from xplique.concepts import Cav # load a model, samples that contain a concept # (positive) and samples who don't (negative) # ... extractor = Cav(model, 'mixed3') concept_vector = extractor(positive_samples, negative_samples) ``` More information on CAV [here](https://deel-ai.github.io/xplique/latest/api/concepts/cav/) and on TCAV [here](https://deel-ai.github.io/xplique/latest/api/concepts/tcav/). ### CRAFT Use Craft to investigate a single class. ```python from xplique.concepts import CraftTf as Craft # Cut the model in two parts: g and h # Create a Craft concept extractor from these 2 models craft = Craft(input_to_latent_model = g, latent_to_logit_model = h) # Use Craft to compute the concepts for a specific class craft.fit(images_preprocessed, class_id=rabbit_class_id) # Compute Sobol indices to understand which concept matters importances = craft.estimate_importance() # Display those concepts by showing the 10 best crops for each concept craft.plot_concepts_crops(nb_crops=10) ``` More information in the [CRAFT documentation](https://deel-ai.github.io/xplique/latest/api/concepts/craft/).
Feature Visualization Finally, in order to find an image that maximizes a neuron and at the same time a layer, we build two objectives that we combine together. We then call the optimizer which returns our images ```python from xplique.features_visualizations import Objective from xplique.features_visualizations import optimize # load a model... neuron_obj = Objective.neuron(model, "logits", 200) channel_obj = Objective.layer(model, "mixed3", 10) obj = neuron_obj + 2.0 * channel_obj images, obj_names = optimize(obj) ``` Want to know more ? Check the Feature Viz [documentation](https://deel-ai.github.io/xplique/latest/api/feature_viz/feature_viz/)
PyTorch with Xplique Even though the library was mainly designed to be a Tensorflow toolbox we have been working on a very practical wrapper to facilitate the integration of your PyTorch models into Xplique's framework! ```python import torch from xplique.wrappers import TorchWrapper from xplique.attributions import Saliency from xplique.metrics import Deletion # load images, targets and model # ... device = 'cuda' if torch.cuda.is_available() else 'cpu' wrapped_model = TorchWrapper(torch_model, device) explainer = Saliency(wrapped_model) explanations = explainer(inputs, targets) metric = Deletion(wrapped_model, inputs, targets) score_saliency = metric(explanations) ``` Want to know more ? Check the [PyTorch documentation](https://deel-ai.github.io/xplique/latest/api/attributions/pytorch/)

📦 What's Included

There are 4 modules in Xplique, Attribution methods, Attribution metrics, Concepts, and Feature visualization. In particular, the attribution methods module supports a huge diversity of tasks:Classification, Regression, Object Detection, and Semantic Segmentation. For diverse data types: Images, Time Series, and Tabular data. The methods compatible with such task are highlighted in the following table:

Table of attributions available | **Attribution Method** | Type of Model | Source | Images | Time Series and Tabular Data | Tutorial | | :--------------------- | :----------------------- | :---------------------------------------- | :------------: | :--------------------------: | :-------: | | Deconvolution | TF | [Paper](https://arxiv.org/abs/1311.2901) | C✔️ OD❌ SS❌ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19eB3uwAtCKZgkoWtMzrF0LTJ-htF_KE7) | | Grad-CAM | TF | [Paper](https://arxiv.org/abs/1610.02391) | C✔️ OD❌ SS❌ | ❌ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1nsB7xdQbU0zeYQ1-aB_D-M67-RAnvt4X) | | Grad-CAM++ | TF | [Paper](https://arxiv.org/abs/1710.11063) | C✔️ OD❌ SS❌ | ❌ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1nsB7xdQbU0zeYQ1-aB_D-M67-RAnvt4X) | | Gradient Input | TF, PyTorch** | [Paper](https://arxiv.org/abs/1704.02685) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19eB3uwAtCKZgkoWtMzrF0LTJ-htF_KE7) | | Guided Backprop | TF | [Paper](https://arxiv.org/abs/1412.6806) | C✔️ OD❌ SS❌ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19eB3uwAtCKZgkoWtMzrF0LTJ-htF_KE7) | | Integrated Gradients | TF, PyTorch** | [Paper](https://arxiv.org/abs/1703.01365) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UXJYVebDVIrkTOaOl-Zk6pHG3LWkPcLo) | | Kernel SHAP | TF, PyTorch**, Callable* | [Paper](https://arxiv.org/abs/1705.07874) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1frholXRE4XQQ3W5yZuPQ2-xqc-LTczfT) | | Lime | TF, PyTorch**, Callable* | [Paper](https://arxiv.org/abs/1602.04938) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1frholXRE4XQQ3W5yZuPQ2-xqc-LTczfT) | | Occlusion | TF, PyTorch**, Callable* | [Paper](https://arxiv.org/abs/1311.2901) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/15xmmlxQkNqNuXgHO51eKogXvLgs-sG4q) | | Rise | TF, PyTorch**, Callable* | [Paper](https://arxiv.org/abs/1806.07421) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1icu2b1JGfpTRa-ic8tBSXnqqfuCGW2mO) | | Saliency | TF, PyTorch** | [Paper](https://arxiv.org/abs/1312.6034) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/19eB3uwAtCKZgkoWtMzrF0LTJ-htF_KE7) | | SmoothGrad | TF, PyTorch** | [Paper](https://arxiv.org/abs/1706.03825) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12-tlM_TdZ12oc5lNL2S2g-hcMJV8tZUD) | | SquareGrad | TF, PyTorch** | [Paper](https://arxiv.org/abs/1806.10758) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12-tlM_TdZ12oc5lNL2S2g-hcMJV8tZUD) | | VarGrad | TF, PyTorch** | [Paper](https://arxiv.org/abs/1810.03292) | C✔️ OD✔️ SS✔️ | C✔️ R✔️ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/12-tlM_TdZ12oc5lNL2S2g-hcMJV8tZUD) | | Sobol Attribution | TF, PyTorch** | [Paper](https://arxiv.org/abs/2111.04138) | C✔️ OD✔️ SS✔️ | 🔵 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1XproaVxXjO9nrBSyyy7BuKJ1vy21iHs2) | | Hsic Attribution | TF, PyTorch** | [Paper](https://arxiv.org/abs/2206.06219) | C✔️ OD✔️ SS✔️ | 🔵 | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1XproaVxXjO9nrBSyyy7BuKJ1vy21iHs2) | | FORGrad enhancement | TF, PyTorch** | [Paper](https://arxiv.org/abs/2307.09591) | C✔️ OD✔️ SS✔️ | ❌ | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1ibLzn7r9QQIEmZxApObowzx8n9ukinYB) | TF : Tensorflow compatible C : [Classification](https://deel-ai.github.io/xplique/latest/api/attributions/classification/) | R : [Regression](https://deel-ai.github.io/xplique/latest/api/attributions/regression/) | OD : [Object Detection](https://deel-ai.github.io/xplique/latest/api/attributions/object_detection/) | SS : [Semantic Segmentation (SS)](https://deel-ai.github.io/xplique/latest/api/attributions/semantic_segmentation/) \* : See the [Callable documentation](https://deel-ai.github.io/xplique/latest/api/attributions/callable/) ** : See the [Xplique for PyTorch documentation](https://deel-ai.github.io/xplique/latest/api/attributions/pytorch/), and the [**PyTorch models**: Getting started](https://colab.research.google.com/drive/1bMlO29_0K3YnTQBbbyKQyRfo8YjvDbhe) notebook. ✔️ : Supported by Xplique | ❌ : Not applicable | 🔵 : Work in Progress
Table of attribution's metric available | **Attribution Metrics** | Type of Model | Property | Source | | :---------------------- | :------------ | :--------------- | :---------------------------------------- | | MuFidelity | TF, PyTorch** | Fidelity | [Paper](https://arxiv.org/abs/2005.00631) | | Deletion | TF, PyTorch** | Fidelity | [Paper](https://arxiv.org/abs/1806.07421) | | Insertion | TF, PyTorch** | Fidelity | [Paper](https://arxiv.org/abs/1806.07421) | | Average Stability | TF, PyTorch** | Stability | [Paper](https://arxiv.org/abs/2005.00631) | | MeGe | TF, PyTorch** | Representativity | [Paper](https://arxiv.org/abs/2009.04521) | | ReCo | TF, PyTorch** | Consistency | [Paper](https://arxiv.org/abs/2009.04521) | | (WIP) e-robustness | TF : Tensorflow compatible ** : See the [Xplique for PyTorch documentation](https://deel-ai.github.io/xplique/latest/api/attributions/pytorch/), and the [**PyTorch models**: Getting started](https://colab.research.google.com/drive/1bMlO29_0K3YnTQBbbyKQyRfo8YjvDbhe) notebook.
Table of concept methods available | **Concepts method** | Type of Model | Source | Tutorial | | :------------------------------ | :------------ | :-------------------------------------------- | :------------ | | Concept Activation Vector (CAV) | TF | [Paper](https://arxiv.org/pdf/1711.11279.pdf) | | | Testing CAV (TCAV) | TF | [Paper](https://arxiv.org/pdf/1711.11279.pdf) | | | CRAFT Tensorflow | TF | [Paper](https://arxiv.org/pdf/2211.10154.pdf) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1jmyhb89Bdz7H4G2KfK8uEVbSC-C_aht_) | | CRAFT PyTorch | PyTorch** | [Paper](https://arxiv.org/pdf/2211.10154.pdf) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/16Jn2pQy4gi2qQYZFnuW6ZNtVAYiNyJHO) | | (WIP) Robust TCAV | | | | | (WIP) Automatic Concept Extraction (ACE) | | | TF : Tensorflow compatible ** : See the [Xplique for Pytorch documentation](https://deel-ai.github.io/xplique/latest/pytorch/), and the [**PyTorch's model**: Getting started](https://colab.research.google.com/drive/1bMlO29_0K3YnTQBbbyKQyRfo8YjvDbhe) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1bMlO29_0K3YnTQBbbyKQyRfo8YjvDbhe) notebook
Table of Feature Visualization methods available | **Feature Visualization** [(Paper)](https://distill.pub/2017/feature-visualization/) | Type of Model | Details | | :----------------------------------------------------------------------------------- | :------------ | :----------------------------------------------------------------------------------------------------------------- | | Neurons | TF | Optimizes for specific neurons | | Layer | TF | Optimizes for specific layers | | Channel | TF | Optimizes for specific channels | | Direction | TF | Optimizes for specific vector | | Fourrier Preconditioning | TF | Optimize in Fourier basis (see [preconditioning](https://distill.pub/2017/feature-visualization/#preconditioning)) | | Objective combination | TF | Allows to combine objectives | | MaCo | TF | Fixed Magnitude optimisation, see [Paper](https://arxiv.org/pdf/2306.06805.pdf) | TF : Tensorflow compatible

Even though we are only at the early stages, we have also recently added an Example-based methods module. Do not hesitate to give us feedback! Currently, the methods available are summarized in the following table:

Table of example-based methods available | Method | Family | Documentation | Tutorial | | --- | --- | --- | --- | | `SimilarExamples` | Similar Examples | [SimilarExamples](../similar_examples/similar_examples/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) | | `Cole` | Similar Examples | [Cole](../similar_examples/cole/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) | | | | | | `NaiveCounterFactuals` | Counter Factuals | [NaiveCounterFactuals](../counterfactuals/naive_counter_factuals/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) | | `LabelAwareCounterFactuals` | Counter Factuals | [LabelAwareCounterFactuals](../counterfactuals/label_aware_counter_factuals/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) | |||| | `KLEORSimMiss` | Semi Factuals | [KLEOR](../semifactuals/kleor/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) | | `KLEORGlobalSim` | Semi Factuals | [KLEOR](../semifactuals/kleor/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1gA7mhWhWzdKholZWkTvAg4FzFnzS8NHF) | |||| | `ProtoGreedy` | Prototypes | [ProtoGreedy](../prototypes/proto_greedy/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1OI3oa884GwGbXlzn3Y9NH-1j4cSaQb0w) | | `ProtoDash` | Prototypes | [ProtoDash](../prototypes/proto_dash/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1OI3oa884GwGbXlzn3Y9NH-1j4cSaQb0w) | | `MMDCritic` | Prototypes | [MMDCritic](../prototypes/mmd_critic/) | [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1OI3oa884GwGbXlzn3Y9NH-1j4cSaQb0w) |

👍 Contributing

Feel free to propose your ideas or come and contribute with us on the Xplique toolbox! We have a specific document where we describe in a simple way how to make your first pull request: just here.

👀 See Also

This library is one approach of many to explain your model. We don't expect it to be the perfect solution, we create it to explore one point in the space of possibilities.

Other interesting tools to explain your model: - [Lucid](https://github.com/tensorflow/lucid) the wonderful library specialized in feature visualization from OpenAI. - [Captum](https://captum.ai/) the PyTorch library for Interpretability research - [Tf-explain](https://github.com/sicara/tf-explain) that implement multiples attribution methods and propose callbacks API for tensorflow. - [Alibi Explain](https://github.com/SeldonIO/alibi) for model inspection and interpretation - [SHAP](https://github.com/slundberg/shap) a very popular library to compute local explanations using the classic Shapley values from game theory and their related extensions
To learn more about Explainable AI in general: - [Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/) by Christophe Molnar. - [Interpretability Beyond Feature Attribution](https://www.youtube.com/watch?v=Ff-Dx79QEEY) by Been Kim. - [Explaining ML Predictions: State-of-the-art, Challenges, and Opportunities](https://www.youtube.com/watch?v=7dpOSmQ89L8) by Himabindu Lakkaraju, Julius Adebayo and Sameer Singh. - [A Roadmap for the Rigorous Science of Interpretability](https://www.youtube.com/watch?v=MMxZlr_L6YE) by Finale Doshi-Velez. - [DEEL White paper](https://arxiv.org/abs/2103.10529) a summary of the DEEL team on the challenges of certifiable AI and the role of explainability for this purpose
More from the DEEL project: - [deel-lip](https://github.com/deel-ai/deel-lip) a Python library for training k-Lipschitz neural networks on TF. - [deel-torchlip](https://github.com/deel-ai/deel-torchlip) a Python library for training k-Lipschitz neural networks on PyTorch. - [Influenciae](https://github.com/deel-ai/influenciae) Python toolkit dedicated to computing influence values for the discovery of potentially problematic samples in a dataset. - [LARD](https://github.com/deel-ai/LARD) Landing Approach Runway Detection (LARD) is a dataset of aerial front view images of runways designed for aircraft landing phase - [PUNCC](https://github.com/deel-ai/puncc) Puncc (Predictive uncertainty calibration and conformalization) is an open-source Python library that integrates a collection of state-of-the-art conformal prediction algorithms and related techniques for regression and classification problems - [OODEEL](https://github.com/deel-ai/oodeel) OODeel is a library that performs post-hoc deep OOD detection on already trained neural network image classifiers. The philosophy of the library is to favor quality over quantity and to foster easy adoption - [DEEL White paper](https://arxiv.org/abs/2103.10529) a summary of the DEEL team on the challenges of certifiable AI and the role of data quality, representativity and explainability for this purpose.

🙏 Acknowledgments

DEEL Logo

This project received funding from the French ”Investing for the Future – PIA3” program within the Artificial and Natural Intelligence Toulouse Institute (ANITI). The authors gratefully acknowledge the support of the DEEL project.

👨‍🎓 Creators

This library was started as a side-project by Thomas FEL who is currently a graduate student at the Artificial and Natural Intelligence Toulouse Institute under the direction of Thomas SERRE. His thesis work focuses on explainability for deep neural networks.

He then received help from some members of the DEEL team to enhance the library namely from Lucas Hervier and Antonin Poché.

🗞️ Citation

If you use Xplique as part of your workflow in a scientific publication, please consider citing the 🗞️ Xplique official paper:

@article{fel2022xplique,
  title={Xplique: A Deep Learning Explainability Toolbox},
  author={Fel, Thomas and Hervier, Lucas and Vigouroux, David and Poche, Antonin and Plakoo, Justin and Cadene, Remi and Chalvidal, Mathieu and Colin, Julien and Boissin, Thibaut and Bethune, Louis and Picard, Agustin and Nicodeme, Claire 
          and Gardes, Laurent and Flandin, Gregory and Serre, Thomas},
  journal={Workshop on Explainable Artificial Intelligence for Computer Vision (CVPR)},
  year={2022}
}

📝 License

The package is released under MIT license.