dmccloskey / EvoNet

MIT License
2 stars 0 forks source link

EvoNet: Evolving end-to-end computational networks ########################################################################################################## |docs| |circleci| |license|

.. begin_badges

.. |docs| image:: https://readthedocs.com/projects/evonet/badge/?version=latest :alt: Documentation Status :target: https://evonet.readthedocs.io/en/latest/?badge=latest

.. |circleci| image:: https://circleci.com/gh/dmccloskey/EvoNet.svg?branch=develop?style=svg :alt: CircleCI Build Status (Windows, Linux & macOS) :target: https://circleci.com/gh/dmccloskey/EvoNet

.. |license| image:: https://img.shields.io/github/license/dmccloskey/EvoNet.svg :alt: License MIT Clause :target: https://github.com/dmccloskey/EvoNet/blob/develop/LICENSE

.. end_badges

.. begin_introduction

EvoNet aims to provide a machine learning framework that can optimize both network weights AND network structure simultaneously while still taking advantage of the latest hardware acceleration technology (Fig 1).

.. image:: images/Schematic_GraphNetwork.png

Currently, network structure is optimized using an evolutionary algorithm over network node integration and activation functions and over node connections (Fig 2), while network weights are optimized using standard backpropogation.

.. image:: images/Schematic_mutationOperations.png

EvoNet is written in C++ and is optimized for hardware acceleration using native threading and CUDA GPU technology.

.. end_introduction

.. role:: bash(code) :language: bash

Features

.. begin_examples

Examples

.. begin_examples

.. begin_features

Features

.. end_features

.. begin_code

Code

.. end_code