domokane / FinancePy

A Python Finance Library that focuses on the pricing and risk-management of Financial Derivatives, including fixed-income, equity, FX and credit derivatives.
GNU General Public License v3.0
2.16k stars 322 forks source link
asset-allocation bonds credit currency derivatives derivatives-pricing finance fixed-income investment numba pricing python risk risk-management students valuation

FinancePy

A one-stop library for pricing and risk-managing options, futures and other financial instruments. See below for a comprehensive overview.

Getting Started

FinancePy can be installed from pip using the following command:

pip install financepy

To upgrade an existing installation type:

pip install --upgrade financepy

The notebooks folder contains over 60 example notebooks on how to use the library.

There is also a pdf manual at the top of the project listing all of the functionality.

Disclaimer

This software is distributed FREE AND WITHOUT ANY WARRANTY. Report any bugs or concerns here as an issue.

Contributing

If you have a knowledge of Quantitative Finance and Python, then please consider contributing to this project. There are small tasks and big tasks to be done. Just look in the list of Issues and you may find something you can do. Before you begin, please comment in the issue thread in case someone else may be working on that issue. Or you can contact me directly at dominic.okane at edhec.edu. There are a number of requirements:

Users

If you are a user and require some additional functionality, then please add it as an issue.

Overview

FinancePy is a python-based library that is currently in beta version. It covers the following functionality:

Although it is written entirely in Python, it can achieve speeds comparable to C++ by using Numba. As a result the user has both the ability to examine the underlying code and the ability to perform pricing and risk at speeds which compare to a library written in C++.

The target audience for this library includes:

Users should have a good, but not advanced, understanding of Python. In terms of Python, the style of the library has been determined subject to the following criteria:

  1. To make the code as simple as possible so that those with a basic Python fluency can understand and check the code.
  2. To keep all the code in Python so users can look through the code to the lowest level.
  3. To offset the performance impact of (2) by leveraging Numba to make the code as fast as possible without resorting to Cython.
  4. To make the design product-based rather than model-based so someone wanting to price a specific product can easily find that without having to worry too much about the model – just use the default – unless they want to. For most products, a Monte-Carlo implementation has been provided both as a reference for testing and as a way to better understand how the product functions in terms of payments, their timings and conditions.
  5. To make the library as complete as possible so a user can find all their required finance-related functionality in one place. This is better for the user as they only have to learn one interface.
  6. To avoid complex designs. Limited inheritance unless it allows for significant code reuse. Some code duplication is OK, at least temporarily.
  7. To have good documentation and easy-to-follow examples.
  8. To make it easy for interested parties to contribute.

In many cases the valuations should be close to if not identical to those produced by financial systems such as Bloomberg. However for some products, larger value differences may arise due to differences in date generation and interpolation schemes. Over time it is hoped to reduce the size of such differences.

Important Note:

The underlying Python library is split into a number of major modules:

Any product valuation is the result of the following data design:

VALUATION = PRODUCT + MODEL + MARKET

The interface to each product has a value() function that will take a model and market to produce a price.

Author

Dominic O'Kane. I am a Professor of Finance at the EDHEC Business School in Nice, France. I have 12 years of industry experience and over 15 years of academic experience.

Contact me at dominic.okane at edhec.edu.

Dependencies

FinancePy depends on Numpy, Numba, Scipy and basic python libraries such as os, sys and datetime.

Changelog

See the changelog for a detailed history of changes.

License

GPL-3.0 License - See the license file in this folder for details.