dora-team / fourkeys

Platform for monitoring the four key software delivery metrics of software delivery
Apache License 2.0
2.18k stars 600 forks source link
metrics monitoring

This repository is not currently maintained. We encourage you to explore it, fork it, or otherwise use it as inspiration for your own metrics instrumentation.

Four Keys

Four Keys YouTube Video

Background

Through six years of research, the DevOps Research and Assessment (DORA) team has identified four key metrics that indicate the performance of software delivery. Four Keys allows you to collect data from your development environment (such as GitHub or GitLab) and compiles it into a dashboard displaying these key metrics.

These four key metrics are:

Who should use Four Keys

Use Four Keys if:

Four Keys works well with projects that have deployments. Projects with releases and no deployments, for example, libraries, do not work well because of how GitHub and GitLab present their data about releases.

For a quick baseline of your team's software delivery performance, you can also use the DORA DevOps Quick Check. The quick check also suggests DevOps capabilities you can work on to improve your performance. The Four Keys project itself can help you improve the following DevOps capabilities:

How it works

  1. Events are sent to a webhook target hosted on Cloud Run. Events are any occurrence in your development environment (for example, GitHub or GitLab) that can be measured, such as a pull request or new issue. Four Keys defines events to measure, and you can add others that are relevant to your project.
  2. The Cloud Run target publishes all events to Pub/Sub.
  3. A Cloud Run instance is subscribed to the Pub/Sub topics, does some light data transformation, and inputs the data into BigQuery.
  4. The BigQuery view to complete the data transformations and feed into the dashboard.

This diagram shows the design of the Four Keys system:

Diagram of the FourKeys Design

Code structure

How to use

Out of the box

The project uses Python 3 and supports data extraction for Cloud Build and GitHub events.

  1. Fork this project.
  2. Run the automation scripts, which does the following (See the setup README for more details):
    1. Create and deploy the Cloud Run webhook target and ETL workers.
    2. Create the Pub/Sub topics and subscriptions.
    3. Enable the Google Secret Manager and create a secret for your GitHub repo.
    4. Create a BigQuery dataset, tables and views.
    5. Output a URL for the newly generated Grafana dashboard.
  3. Set up your development environment to send events to the webhook created in the second step.
    1. Add the secret to your GitHub webhook.

NOTE: Make sure you don't use "Squash Merging" in Git when merging back into trunk. This breaks the link between the commit into trunk and the commits from the branch you developed on and as thus it is not possible to measure "Time to Change" on these commits. It is possible to disable this feature in the settings of your repo

Generating mock data

The setup script includes an option to generate mock data. Generate mock data to play with and test the Four Keys project.

The data generator creates mocked GitHub events, which are ingested into the table with the source “githubmock.” It creates following events:

To run outside of the setup script:

  1. Ensure that you’ve saved your webhook URL and secret in your environment variables:

    export WEBHOOK={your event handler URL}
    export SECRET={your event-handler secret}
  2. Run the following command:

    python3 data-generator/generate_data.py --vc_system=github

    You can see these events being run through the pipeline:

    • The event handler logs show successful requests
    • The Pub/Sub topic show messages posted
    • The BigQuery GitHub parser show successful requests
  3. You can query the events_raw table directly in BigQuery:

    SELECT * FROM four_keys.events_raw WHERE source = 'githubmock';

Reclassifying events / updating your queries

The scripts consider some events to be “changes”, “deploys”, and “incidents.” You may want to reclassify one or more of these events, for example, if you want to use a label for your incidents other than “incident.” To reclassify one of the events in the table, no changes are required on the architecture or code of the project.

  1. Update the view in BigQuery for the following tables:

    • four_keys.changes
    • four_keys.deployments
    • four_keys.incidents

    To update the view, we recommend that you update the sql files in the queries folder, rather than in the BigQuery UI.

  2. Once you've edited the SQL, run terraform apply to update the view that populates the table:

    cd ./setup && terraform apply

Notes:

Extending to other event sources

To add other event sources:

  1. Add to the AUTHORIZED_SOURCES in sources.py.
    1. If create a verification function, add the function to the file as well.
  2. Run the new_source.sh script in the setup directory. This script creates a Pub/Sub topic, a Pub/Sub subscription, and the new service using the new_source_template .
    1. Update the main.py in the new service to parse the data properly.
  3. Update the BigQuery script to classify the data properly.

If you add a common data source, please submit a pull request so that others may benefit from the functionality.

Running tests

This project uses nox to manage tests. The noxfile defines what tests run on the project. It’s set up to run all the pytest files in all the directories, as well as run a linter on all directories.

To run nox:

  1. Ensure that nox is installed:

    pip install nox
  2. Use the following command to run nox:

    python3 -m nox

Listing tests

To list all the test sessions in the noxfile, use the following command:

python3 -m nox -l

Running a specific test

Once you have the list of test sessions, you can run a specific session with:

python3 -m nox -s "{name_of_session}" 

The "name_of_session" will be something like "py-3.6(folder='.....').

Data schema

four_keys.events_raw

Field Name Type Notes
source STRING eg: github
event_type STRING eg: push
id* STRING Id of the development object. Eg, bug id, commit id, PR id
metadata JSON Body of the event
time_created TIMESTAMP The time the event was created
signature STRING Encrypted signature key from the event. This will be the unique key for the table.
msg_id STRING Message id from Pub/Sub

*indicates that the ID is generated by the original system, such as GitHub.

This table will be used to create the following three derived tables:

four_keys.deployments

Note: Deployments and changes have a many to one relationship. Table only contains successful deployments.

Field Name Type Notes
🔑deploy_id string Id of the deployment - foreign key to id in events_raw
changes array of strings List of id’s associated with the deployment. Eg: commit_id’s, bug_id’s, etc.
time_created timestamp Time the deployment was completed

four_keys.changes

Field Name Type Notes
🔑change_id string Id of the change - foreign key to id in events_raw
time_created timestamp Time_created from events_raw
change_type string The event type

four_keys.incidents

Field Name Type Notes
🔑incident_id string Id of the failure incident
changes array of strings List of deployment ID’s that caused the failure
time_created timestamp Min timestamp from changes
time_resolved timestamp Time the incident was resolved

Dashboard

Image of the Four Keys dashboard.

The dashboard displays all four metrics with daily systems data, as well as a current snapshot of the last 90 days. The key metric definitions and description of the color coding are below.

For a deeper understanding of the metrics and intent of the dashboard, see the 2019 State of DevOps Report.

For details about how Four Keys calculates each metric in this dashboard, see the Four Keys Metrics calculation doc.

Key metrics definitions

This Four Keys project defines the key metrics as follows:

Deployment Frequency

Lead Time for Changes

Time to Restore Services

Change Failure Rate

For more information on the calculation of the metrics, see the METRICS.md

Color coding

The dashboard has color coding to show the performance of each metric. Green is strong performance, yellow is moderate performance, and red is poor performance. Below is the description of the data that corresponds to the color for each metric.

The data ranges used for this color coding roughly follows the ranges for elite, high, medium, and low performers that are described in the 2019 State of DevOps Report.

Deployment Frequency

Lead Time to Change

Time to Restore Service

Change Failure Rate

The following chart is from the 2019 State of DevOps Report, and shows the ranges of each key metric for the different category of performers.

Image of chart from the State of DevOps Report, showing the range of each key metric for elite, high, medium, and low software delivery performers.

Disclaimer: This is not an officially supported Google product