dvlab-research / EfficientNeRF

The official code for "Efficient Neural Radiance Fields" in CVPR2022.
153 stars 11 forks source link

The official code for "EfficientNeRF: Efficient Neural Radiance Fields" in CVPR2022.

Environment (Tested)

Install via Anaconda

$ conda create -n EfficientNeRF python=3.8
$ conda activate EfficientNeRF
$ pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt

Training

$ DATA_DIR=/path/to/lego
$ python train.py \
   --dataset_name blender \
   --root_dir $DATA_DIR \
   --N_samples 128 \
   --N_importance 5 --img_wh 800 800 \
   --num_epochs 16 --batch_size 4096 \
   --optimizer radam --lr 2e-3 \
   --lr_scheduler poly \
   --coord_scope 3.0 \
   --warmup_step 5000\
   --sigma_init 30.0 \
   --weight_threashold 1e-5 \
   --exp_name lego_coarse128_fine5_V384

Visualization

$ tensorboard --logdir=./logs

Question

Progress

More scenes and applications will be suported soon. Stay tune!

Acknowledgement

Our initial code was borrowed from

Citation

If you find our code or paper helps, please cite our paper:

@InProceedings{Hu_2022_CVPR,
    author    = {Hu, Tao and Liu, Shu and Chen, Yilun and Shen, Tiancheng and Jia, Jiaya},
    title     = {EfficientNeRF  Efficient Neural Radiance Fields},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
    month     = {June},
    year      = {2022},
    pages     = {12902-12911}
}