$ conda create -n EfficientNeRF python=3.8
$ conda activate EfficientNeRF
$ pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 torchaudio==0.9.1 -f https://download.pytorch.org/whl/torch_stable.html
$ pip install -r requirements.txt
$ DATA_DIR=/path/to/lego
$ python train.py \
--dataset_name blender \
--root_dir $DATA_DIR \
--N_samples 128 \
--N_importance 5 --img_wh 800 800 \
--num_epochs 16 --batch_size 4096 \
--optimizer radam --lr 2e-3 \
--lr_scheduler poly \
--coord_scope 3.0 \
--warmup_step 5000\
--sigma_init 30.0 \
--weight_threashold 1e-5 \
--exp_name lego_coarse128_fine5_V384
$ tensorboard --logdir=./logs
More scenes and applications will be suported soon. Stay tune!
Our initial code was borrowed from
If you find our code or paper helps, please cite our paper:
@InProceedings{Hu_2022_CVPR,
author = {Hu, Tao and Liu, Shu and Chen, Yilun and Shen, Tiancheng and Jia, Jiaya},
title = {EfficientNeRF Efficient Neural Radiance Fields},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2022},
pages = {12902-12911}
}