Open MyronRodrigues-StreetDrone opened 1 year ago
Thank you for open sourcing your work.
I need some help to run a single inference on the model. Evaluation results match the results shown in readme.
I managed to get 10 Lidar seeps from the nuscenes dataset to pass into the data processor how do I run the model on batch size 1?
I get results with a very low score.
[{'pred_boxes': tensor([[ 5.9413e+00, 3.6396e+00, 3.4623e-02, ..., 2.1592e+00, 8.4747e-02, -4.7400e-02], [ 8.3678e+00, 2.4014e+00, -1.2982e-02, ..., 1.9676e+00, 1.6921e-02, 3.2265e-02], [ 7.1588e+00, 3.0267e+00, 8.0288e-03, ..., -7.9587e-01, -1.0607e-02, 4.5947e-02], ..., [-3.2396e+01, 2.6405e+01, 1.2968e-02, ..., -1.3317e+00, 2.1994e-02, 1.7819e-02], [ 9.5994e+00, 5.0404e+01, 5.9437e-03, ..., -1.0493e+00, 1.6636e-02, 8.8143e-03], [-7.8000e+00, -8.9908e+00, 4.4057e-03, ..., -1.0186e+00, 4.8190e-02, 5.5851e-03]], device='cuda:0'), 'pred_ious': [None, None, None, None, None, None], 'pred_labels': tensor([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9], device='cuda:0'), 'pred_scores': tensor([0.1018, 0.1016, 0.1016, 0.1015, 0.1015, 0.1014, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1011, 0.1045, 0.1034, 0.1034, 0.1033, 0.1032, 0.1032, 0.1032, 0.1031, 0.1031, 0.1031, 0.1031, 0.1031, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1030, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1029, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1028, 0.1032, 0.1026, 0.1023, 0.1022, 0.1021, 0.1019, 0.1019, 0.1019, 0.1018, 0.1018, 0.1018, 0.1017, 0.1017, 0.1017, 0.1017, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1014, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1013, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1012, 0.1026, 0.1022, 0.1022, 0.1021, 0.1021, 0.1020, 0.1020, 0.1020, 0.1019, 0.1019, 0.1018, 0.1018, 0.1018, 0.1017, 0.1017, 0.1017, 0.1017, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1016, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1015, 0.1000, 0.1039, 0.1037, 0.1036, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1034, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1033, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032, 0.1032], device='cuda:0')}]
+1 I need help with this too.
hello,how do you train the datasets? I’m a freshman to run the work, please give me some tips.Thanks!
Thank you for open sourcing your work.
I need some help to run a single inference on the model. Evaluation results match the results shown in readme.
I managed to get 10 Lidar seeps from the nuscenes dataset to pass into the data processor how do I run the model on batch size 1?
I get results with a very low score.