Repository for EMNLP-2022 Paper (FineD-Eval: Fine-grained Automatic Dialogue-Level Evaluation)
conda env create -f environment.yml
conda activate finedeval
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
Download data.zip, output.zip, and roberta_full_base.zip at
https://www.dropbox.com/sh/8zyzxe53pt9zkwe/AACJRW54n-6v4btlRK7CtfhAa?dl=0
unzip the three zip files and put everything under the current folder
see bash files in scripts/train
see bash files in scripts/eval
enter the output folder and execute the following example:
python dialogue_compute.py --prefix coherence_base/dailydialog_coherence_123456/
@inproceedings{zhang-etal-2022-finedeval,
title = "{F}ine{D}-{E}val: Fine-grained Automatic Dialogue-Level Evaluation",
author = "Zhang, Chen and
D{'}Haro, Luis Fernando and
Zhang, Qiquan and
Friedrichs, Thomas and
Li, Haizhou",
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
month = dec,
year = "2022",
publisher = "Association for Computational Linguistics",
}
The implementation of this repository is modified from https://github.com/princeton-nlp/MADE
@inproceedings{friedman2021single,
title={Single-dataset Experts for Multi-dataset QA},
author={Friedman, Dan and Dodge, Ben and Chen, Danqi},
booktitle={Empirical Methods in Natural Language Processing (EMNLP)},
year={2021}
}