This application is a wrapper around the Stanford CoreNLP pipeline for eXist-db
Loren was between projects and at an eXist-db weekly conference call it came to light that the previous implementations of Stanford NLP and Named Entity Recognition were not compatible with version 5.x of eXist-db. Loren took this project on while looking for the next project, so please see the contributions section at the end of this article.
5.0.0
with min 4Gb
memory3.6.0
8
12
)1.9.11
)All dependencies including node.js and polymer dependencies are managed by maven. Simply, run mvn clean package
to generate a .xar
file inside the target/
directory. Then follow the installation instructions below.
When developing web-components you can navigate to the src/main/polymer
directory and execute polymer-cli commands.
For more information see the polymer readme
To run unit tests(java, xquery, web-component) locally use: mvn test
.
Support for integration tests, namely, Web Component Tester is TBD.
Open the eXist-db Dashboard
Login as the administrator
Select Stanford Natural Language Processing
The application is installed without language files OOTB. The files need to be loaded after installation. Click on the Setup tab and then click on the language(s) that you want to load.
When a language is loaded, then there is a checkmark in the button.
The properties files within the JAR file are transformed to JSON documents where the entries pointing to the data files that have been loaded into the database are transformed to the URL to that resource.
The pipeline uses default properties that assume that the english jar file is loaded in the classpath. Since the english jar is loaded into the database it is important to have a defaults JSON document that points to the english files in the database.
The defaults are loaded into
/db/apps/stanford-nlp/data/StanfordCoreNLP-english.json
This user interface allows the user to enter text in the textbox, select the language and then after it is submitted the resulting NER has a color coded view of the text that identities the named entities.
xquery version "3.1";
import module namespace nlp="http://exist-db.org/xquery/stanford-nlp";
let $properties := json-doc("/db/apps/stanford-nlp/data/StanfordCoreNLP-german.json")
let $text := "Juliana kommt aus Paris. Das ist die Hauptstadt von Frankreich. " ||
"In diesem Sommer macht sie einen Sprachkurs in Freiburg. Das ist " ||
"eine Universitätsstadt im Süden von Deutschland."
return nlp:parse($text, $properties)
The properties JSON document for German is:
{
"ner.applyNumericClassifiers": "false",
"depparse.language": "german",
"ner.useSUTime": "false",
"ner.applyFineGrained": "false",
"tokenize.language": "de",
"parse.model": "http://localhost:8080/exist/apps/stanford-nlp/data/edu/stanford/nlp/models/lexparser/germanFactored.ser.gz",
"pos.model": "http://localhost:8080/exist/apps/stanford-nlp/data/edu/stanford/nlp/models/pos-tagger/german/german-hgc.tagger",
"ner.model": "http://localhost:8080/exist/apps/stanford-nlp/data/edu/stanford/nlp/models/ner/german.conll.germeval2014.hgc_175m_600.crf.ser.gz",
"annotators": [
"tokenize",
"ssplit",
"pos",
"ner",
"parse"
],
"depparse.model": "http://localhost:8080/exist/apps/stanford-nlp/data/edu/stanford/nlp/models/parser/nndep/UD_German.gz"
}
This returns an XML document of the parsed text.
<StanfordNLP>
<sentences>
<sentence id="1">
<tokens>
<token id="1">
<word>Juliana</word>
<CharacterOffsetBegin>0</CharacterOffsetBegin>
<CharacterOffsetEnd>7</CharacterOffsetEnd>
<POS>NE</POS>
<NER>PERSON</NER>
</token>
<token id="2">
<word>kommt</word>
<CharacterOffsetBegin>8</CharacterOffsetBegin>
<CharacterOffsetEnd>13</CharacterOffsetEnd>
<POS>VVFIN</POS>
<NER>O</NER>
</token>
<token id="3">
<word>aus</word>
<CharacterOffsetBegin>14</CharacterOffsetBegin>
<CharacterOffsetEnd>17</CharacterOffsetEnd>
<POS>APPR</POS>
<NER>O</NER>
</token>
<token id="4">
<word>Paris</word>
<CharacterOffsetBegin>18</CharacterOffsetBegin>
<CharacterOffsetEnd>23</CharacterOffsetEnd>
<POS>NE</POS>
<NER>LOCATION</NER>
</token>
<token id="5">
<word>.</word>
<CharacterOffsetBegin>23</CharacterOffsetBegin>
<CharacterOffsetEnd>24</CharacterOffsetEnd>
<POS>$.</POS>
<NER>O</NER>
</token>
</tokens>
<parse>(ROOT
(S (NE Juliana) (VVFIN kommt)
(PP (APPR aus) (NE Paris))
($. .)))
</parse>
</sentence>
<sentence id="2">
<tokens>
<token id="1">
<word>Das</word>
<CharacterOffsetBegin>25</CharacterOffsetBegin>
<CharacterOffsetEnd>28</CharacterOffsetEnd>
<POS>PDS</POS>
<NER>O</NER>
</token>
<token id="2">
<word>ist</word>
<CharacterOffsetBegin>29</CharacterOffsetBegin>
<CharacterOffsetEnd>32</CharacterOffsetEnd>
<POS>VAFIN</POS>
<NER>O</NER>
</token>
<token id="3">
<word>die</word>
<CharacterOffsetBegin>33</CharacterOffsetBegin>
<CharacterOffsetEnd>36</CharacterOffsetEnd>
<POS>ART</POS>
<NER>O</NER>
</token>
<token id="4">
<word>Hauptstadt</word>
<CharacterOffsetBegin>37</CharacterOffsetBegin>
<CharacterOffsetEnd>47</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
</token>
<token id="5">
<word>von</word>
<CharacterOffsetBegin>48</CharacterOffsetBegin>
<CharacterOffsetEnd>51</CharacterOffsetEnd>
<POS>APPR</POS>
<NER>O</NER>
</token>
<token id="6">
<word>Frankreich</word>
<CharacterOffsetBegin>52</CharacterOffsetBegin>
<CharacterOffsetEnd>62</CharacterOffsetEnd>
<POS>NE</POS>
<NER>LOCATION</NER>
</token>
<token id="7">
<word>.</word>
<CharacterOffsetBegin>62</CharacterOffsetBegin>
<CharacterOffsetEnd>63</CharacterOffsetEnd>
<POS>$.</POS>
<NER>O</NER>
</token>
</tokens>
<parse>(ROOT
(S (PDS Das) (VAFIN ist)
(NP (ART die) (NN Hauptstadt)
(PP (APPR von) (NE Frankreich)))
($. .)))
</parse>
</sentence>
<sentence id="3">
<tokens>
<token id="1">
<word>In</word>
<CharacterOffsetBegin>64</CharacterOffsetBegin>
<CharacterOffsetEnd>66</CharacterOffsetEnd>
<POS>APPR</POS>
<NER>O</NER>
</token>
<token id="2">
<word>diesem</word>
<CharacterOffsetBegin>67</CharacterOffsetBegin>
<CharacterOffsetEnd>73</CharacterOffsetEnd>
<POS>PDAT</POS>
<NER>O</NER>
</token>
<token id="3">
<word>Sommer</word>
<CharacterOffsetBegin>74</CharacterOffsetBegin>
<CharacterOffsetEnd>80</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
</token>
<token id="4">
<word>macht</word>
<CharacterOffsetBegin>81</CharacterOffsetBegin>
<CharacterOffsetEnd>86</CharacterOffsetEnd>
<POS>VVFIN</POS>
<NER>O</NER>
</token>
<token id="5">
<word>sie</word>
<CharacterOffsetBegin>87</CharacterOffsetBegin>
<CharacterOffsetEnd>90</CharacterOffsetEnd>
<POS>PPER</POS>
<NER>O</NER>
</token>
<token id="6">
<word>einen</word>
<CharacterOffsetBegin>91</CharacterOffsetBegin>
<CharacterOffsetEnd>96</CharacterOffsetEnd>
<POS>ART</POS>
<NER>O</NER>
</token>
<token id="7">
<word>Sprachkurs</word>
<CharacterOffsetBegin>97</CharacterOffsetBegin>
<CharacterOffsetEnd>107</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
</token>
<token id="8">
<word>in</word>
<CharacterOffsetBegin>108</CharacterOffsetBegin>
<CharacterOffsetEnd>110</CharacterOffsetEnd>
<POS>APPR</POS>
<NER>O</NER>
</token>
<token id="9">
<word>Freiburg</word>
<CharacterOffsetBegin>111</CharacterOffsetBegin>
<CharacterOffsetEnd>119</CharacterOffsetEnd>
<POS>NE</POS>
<NER>LOCATION</NER>
</token>
<token id="10">
<word>.</word>
<CharacterOffsetBegin>119</CharacterOffsetBegin>
<CharacterOffsetEnd>120</CharacterOffsetEnd>
<POS>$.</POS>
<NER>O</NER>
</token>
</tokens>
<parse>(ROOT
(S
(PP (APPR In) (PDAT diesem) (NN Sommer))
(VVFIN macht) (PPER sie)
(NP (ART einen) (NN Sprachkurs)
(PP (APPR in) (NE Freiburg)))
($. .)))
</parse>
</sentence>
<sentence id="4">
<tokens>
<token id="1">
<word>Das</word>
<CharacterOffsetBegin>121</CharacterOffsetBegin>
<CharacterOffsetEnd>124</CharacterOffsetEnd>
<POS>PDS</POS>
<NER>O</NER>
</token>
<token id="2">
<word>ist</word>
<CharacterOffsetBegin>125</CharacterOffsetBegin>
<CharacterOffsetEnd>128</CharacterOffsetEnd>
<POS>VAFIN</POS>
<NER>O</NER>
</token>
<token id="3">
<word>eine</word>
<CharacterOffsetBegin>129</CharacterOffsetBegin>
<CharacterOffsetEnd>133</CharacterOffsetEnd>
<POS>ART</POS>
<NER>O</NER>
</token>
<token id="4">
<word>Universitätsstadt</word>
<CharacterOffsetBegin>134</CharacterOffsetBegin>
<CharacterOffsetEnd>151</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
</token>
<token id="5">
<word>im</word>
<CharacterOffsetBegin>152</CharacterOffsetBegin>
<CharacterOffsetEnd>154</CharacterOffsetEnd>
<POS>APPRART</POS>
<NER>O</NER>
</token>
<token id="6">
<word>Süden</word>
<CharacterOffsetBegin>155</CharacterOffsetBegin>
<CharacterOffsetEnd>160</CharacterOffsetEnd>
<POS>NN</POS>
<NER>O</NER>
</token>
<token id="7">
<word>von</word>
<CharacterOffsetBegin>161</CharacterOffsetBegin>
<CharacterOffsetEnd>164</CharacterOffsetEnd>
<POS>APPR</POS>
<NER>O</NER>
</token>
<token id="8">
<word>Deutschland</word>
<CharacterOffsetBegin>165</CharacterOffsetBegin>
<CharacterOffsetEnd>176</CharacterOffsetEnd>
<POS>NE</POS>
<NER>LOCATION</NER>
</token>
<token id="9">
<word>.</word>
<CharacterOffsetBegin>176</CharacterOffsetBegin>
<CharacterOffsetEnd>177</CharacterOffsetEnd>
<POS>$.</POS>
<NER>O</NER>
</token>
</tokens>
<parse>(ROOT
(S (PDS Das) (VAFIN ist)
(NP (ART eine) (NN Universitätsstadt)
(PP (APPRART im) (NN Süden)
(PP (APPR von) (NE Deutschland))))
($. .)))
</parse>
</sentence>
</sentences>
</StanfordNLP>
There is an XQuery library module that takes the output of the NLP pipeline and surrounds the named entities with the appropriate tags.
xquery version "3.1";
import module namespace ner = "http://exist-db.org/xquery/stanford-nlp/ner";
let $text := "Juliana kommt aus Paris. Das ist die Hauptstadt von Frankreich. " ||
"In diesem Sommer macht sie einen Sprachkurs in Freiburg. Das ist " ||
"eine Universitätsstadt im Süden von Deutschland."
return ner:query-text-as-xml($text, "de")
With the results:
<ner>
<PERSON>Juliana</PERSON> kommt aus <LOCATION>Paris</LOCATION>.
Das ist die Hauptstadt von <LOCATION>Frankreich</LOCATION>.
In diesem Sommer macht sie einen Sprachkurs in <LOCATION>Freiburg</LOCATION>.
Das ist eine Universitätsstadt im Süden von <LOCATION>Deutschland</LOCATION>.</ner>
Any requests for features should be submitted to https://github.com/lcahlander/exist-stanford-nlp/issues
Loren is an independent contractor, so his contributions to the Open Source community are on his own time. If you appreciate his contributions to the NoSQL and the Natural Language Processing communities, then please either contract him for a project or submit a contribution to his company PayPal at loren.cahlander@easymetahub.com.