ebonnal / streamable

[Python] Stream-like manipulation of iterables.
Apache License 2.0
131 stars 0 forks source link
asyncio collections data data-engineering decorator-pattern etl etl-pipeline fluent-interface immutability iterable iterator iterator-pattern lazy-evaluation method-chaining python python3 reverse-etl streams threads visitor-pattern

streamable

Stream-like manipulation of iterables

A Stream[T] decorates an Iterable[T] with a fluent interface enabling the chaining of lazy operations.


codecov unittest typing lint PyPI

🔗 Fluent chain methods!
🇹 Typed type-annotated and mypyable
💤 Lazy operations are lazily evaluated at iteration time
🔄 Concurrent via threads or processes or asyncio
🛡️ Robust unit-tested for Python 3.7 to 3.14 with 100% coverage
🪶 Minimalist pip install streamable with no additional dependencies

1. install

pip install streamable

2. import

from streamable import Stream

3. init

Instantiate a Stream[T] from an Iterable[T].

integers: Stream[int] = Stream(range(10))

4. operate

inverses: Stream[float] = (
    integers
    .map(lambda n: round(1 / n, 2))
    .catch(ZeroDivisionError)
)

5. iterate

collect it

>>> list(inverses)
[1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]
>>> set(inverses)
{0.5, 1.0, 0.2, 0.33, 0.25, 0.17, 0.14, 0.12, 0.11}

reduce it

>>> sum(inverses)
2.82
>>> max(inverses)
1.0
>>> from functools import reduce
>>> reduce(..., inverses)

loop it

>>> for inverse in inverses:
>>>    ...

next it

>>> inverses_iter = iter(inverses)
>>> next(inverses_iter)
1.0
>>> next(inverses_iter)
0.5

📒 Operations

.map

Applies a transformation on elements:

negative_integer_strings: Stream[str] = integers.map(lambda n: -n).map(str)

assert list(negative_integer_strings) == ['0', '-1', '-2', '-3', '-4', '-5', '-6', '-7', '-8', '-9']

thread-based concurrency

Applies the transformation via concurrency threads:

import requests

pokemon_names: Stream[str] = (
    Stream(range(1, 4))
    .map(lambda i: f"https://pokeapi.co/api/v2/pokemon-species/{i}")
    .map(requests.get, concurrency=3)
    .map(requests.Response.json)
    .map(lambda poke: poke["name"])
)
assert list(pokemon_names) == ['bulbasaur', 'ivysaur', 'venusaur']

Preserves the upstream order by default (FIFO), but you can set ordered=False for First Done First Out.

concurrency is also the size of the buffer containing not-yet-yielded results. If the buffer is full, the iteration over the upstream is paused until a result is yielded from the buffer.

process-based concurrency

Set via="process":

if __name__ == "__main__":
    state: List[int] = []
    n_integers: int = integers.map(state.append, concurrency=4, via="process").count()
    assert n_integers == 10
    assert state == [] # main process's state not mutated

async-based concurrency

The sibling operation .amap applies an async function:

import httpx
import asyncio

http_async_client = httpx.AsyncClient()

pokemon_names: Stream[str] = (
    Stream(range(1, 4))
    .map(lambda i: f"https://pokeapi.co/api/v2/pokemon-species/{i}")
    .amap(http_async_client.get, concurrency=3)
    .map(httpx.Response.json)
    .map(lambda poke: poke["name"])
)

assert list(pokemon_names) == ['bulbasaur', 'ivysaur', 'venusaur']
asyncio.get_event_loop().run_until_complete(http_async_client.aclose())

starmap

The star function decorator transforms a function that takes several positional arguments into a function that takes a tuple:

from streamable import star

zeros: Stream[int] = (
    Stream(enumerate(integers))
    .map(star(lambda index, integer: index - integer))
)

assert list(zeros) == [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

Also convenient with .foreach, .filter, ...

.foreach

Applies a side effect on elements:

self_printing_integers: Stream[int] = integers.foreach(print)

assert list(self_printing_integers) == list(integers)  # triggers the printing

thread-based concurrency

Like .map it has an optional concurrency parameter.

process-based concurrency

Like for .map, set the parameter via="process".

async-based concurrency

Like .map it has a sibling .aforeach operation for async.

.filter

Keeps only the elements that satisfy a condition:

pair_integers: Stream[int] = integers.filter(lambda n: n % 2 == 0)

assert list(pair_integers) == [0, 2, 4, 6, 8]

.throttle

Limits the number of yields per_second/per_minute/per_hour:

slow_integers: Stream[int] = integers.throttle(per_second=5)

assert list(slow_integers) == list(integers)  # takes 10 / 5 = 2 seconds

and/or ensure a minimum time interval separates successive yields:

from datetime import timedelta

slow_integers = integers.throttle(interval=timedelta(milliseconds=100))

assert list(slow_integers) == list(integers)  # takes 10 * 0.1 = 1 second

.group

Groups elements into Lists:

integers_5_by_5: Stream[List[int]] = integers.group(size=5)

assert list(integers_5_by_5) == [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
integers_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2)

assert list(integers_by_parity) == [[0, 2, 4, 6, 8], [1, 3, 5, 7, 9]]
from datetime import timedelta

integers_within_1s: Stream[List[int]] = (
    integers
    .throttle(per_second=2)
    .group(interval=timedelta(seconds=0.99))
)

assert list(integers_within_1s) == [[0, 1, 2], [3, 4], [5, 6], [7, 8], [9]]

Mix size/by/interval parameters:


integers_2_by_2_by_parity: Stream[List[int]] = integers.group(by=lambda n: n % 2, size=2)

assert list(integers_2_by_2_by_parity) == [[0, 2], [1, 3], [4, 6], [5, 7], [8], [9]]


## `.flatten`

> Ungroups elements assuming that they are `Iterable`s.

```python
pair_then_odd_integers: Stream[int] = integers_by_parity.flatten()

assert list(pair_then_odd_integers) == [0, 2, 4, 6, 8, 1, 3, 5, 7, 9]

thread-based concurrency

Flattens concurrency iterables concurrently:

mix_of_0s_and_1s: Stream[int] = Stream([[0] * 4, [1] * 4]).flatten(concurrency=2)
assert list(mix_of_0s_and_1s) == [0, 1, 0, 1, 0, 1, 0, 1]

.catch

Catches a given type of exceptions, and optionally yields a replacement value:

inverses: Stream[float] = (
    integers
    .map(lambda n: round(1 / n, 2))
    .catch(ZeroDivisionError, replacement=float("inf"))
)

assert list(inverses) == [float("inf"), 1.0, 0.5, 0.33, 0.25, 0.2, 0.17, 0.14, 0.12, 0.11]

You can specify an additional when condition for the catch:


import requests
from requests.exceptions import SSLError

status_codes_ignoring_resolution_errors: Stream[int] = ( Stream(["https://github.com", "https://foo.bar", "https://github.com/foo/bar"]) .map(requests.get, concurrency=2) .catch(SSLError, when=lambda exception: "Max retries exceeded with url" in str(exception)) .map(lambda response: response.status_code) )

assert list(status_codes_ignoring_resolution_errors) == [200, 404]


> It has an optional `finally_raise: bool` parameter to raise the first catched exception when iteration ends.

## `.truncate`

> Ends iteration once a given number of elements have been yielded:

```python
five_first_integers: Stream[int] = integers.truncate(5)

assert list(five_first_integers) == [0, 1, 2, 3, 4]

... or when a condition has become satisfied:

five_first_integers: Stream[int] = integers.truncate(when=lambda n: n == 5)

assert list(five_first_integers) == [0, 1, 2, 3, 4]

.observe

Logs the progress of iterations over this stream, if you iterate on:

observed_slow_integers: Stream[int] = slow_integers.observe("integers")

you will get these logs:

INFO: [duration=0:00:00.502155 errors=0] 1 integers yielded
INFO: [duration=0:00:01.006336 errors=0] 2 integers yielded
INFO: [duration=0:00:02.011921 errors=0] 4 integers yielded
INFO: [duration=0:00:04.029666 errors=0] 8 integers yielded
INFO: [duration=0:00:05.039571 errors=0] 10 integers yielded

The amount of logs will never be overwhelming because they are produced logarithmically e.g. the 11th log will be produced when the iteration reaches the 1024th element.

[!WARNING] It is mute between v1.1.0 and v1.3.1, please pip install --upgrade streamable

zip

Use the standard zip function:

from streamable import star

cubes: Stream[int] = (
    Stream(zip(integers, integers, integers)) # Stream[Tuple[int, int, int]]
    .map(star(lambda a, b, c: a * b * c))
)

assert list(cubes) == [0, 1, 8, 27, 64, 125, 216, 343, 512, 729]

📦 Notes Box

Contribute

Please help us ! Feel very welcome to:

exhaust the stream

.count iterates over the stream until exhaustion and returns the count of elements yielded.

>> assert integers.count() == 10

calling the stream iterates over it until exhaustion and returns it.

>> verbose_integers: Stream[int] = integers.foreach(print)
>> assert verbose_integers() is verbose_integers
0
1
2
3
4
5
6
7
8
9

Extract-Transform-Load

ETL scripts (i.e. scripts fetching -> processing -> pushing data) can benefit from the expressivity of this library.

Here is an example that you can copy-paste and try (it only requires requests): it creates a CSV file containing all the 67 quadrupeds from the 1st, 2nd and 3rd generations of Pokémons (kudos to PokéAPI)

import csv
from datetime import timedelta
import itertools
import requests
from streamable import Stream

with open("./quadruped_pokemons.csv", mode="w") as file:
    fields = ["id", "name", "is_legendary", "base_happiness", "capture_rate"]
    writer = csv.DictWriter(file, fields, extrasaction='ignore')
    writer.writeheader()
    (
        # Infinite Stream[int] of Pokemon ids starting from Pokémon #1: Bulbasaur
        Stream(itertools.count(1))
        # Limits to 16 requests per second to be friendly to our fellow PokéAPI devs
        .throttle(per_second=16)
        # GETs pokemons concurrently using a pool of 8 threads
        .map(lambda poke_id: f"https://pokeapi.co/api/v2/pokemon-species/{poke_id}")
        .map(requests.get, concurrency=8)
        .foreach(requests.Response.raise_for_status)
        .map(requests.Response.json)
        # Stops the iteration when reaching the 1st pokemon of the 4th generation
        .truncate(when=lambda poke: poke["generation"]["name"] == "generation-iv")
        .observe("pokemons")
        # Keeps only quadruped Pokemons
        .filter(lambda poke: poke["shape"]["name"] == "quadruped")
        .observe("quadruped pokemons")
        # Catches errors due to None "generation" or "shape"
        .catch(
            TypeError,
            when=lambda error: str(error) == "'NoneType' object is not subscriptable"
        )
        # Writes a batch of pokemons every 5 seconds to the CSV file
        .group(interval=timedelta(seconds=5))
        .foreach(writer.writerows)
        .flatten()
        .observe("written pokemons")
        # Catches exceptions and raises the 1st one at the end of the iteration
        .catch(finally_raise=True)
        # Actually triggers an iteration (the lines above define lazy operations)
        .count()
    )

logging level

logging.getLogger("streamable").setLevel(logging.WARNING)  # default is INFO

visitor pattern

The Stream class exposes an .accept method and you can implement a visitor by extending the streamable.visitors.Visitor abstract class:

from streamable.visitors import Visitor

class DepthVisitor(Visitor[int]):
    def visit_stream(self, stream: Stream) -> int:
        if not stream.upstream:
            return 1
        return 1 + stream.upstream.accept(self)

def depth(stream: Stream) -> int:
    return stream.accept(DepthVisitor())

assert depth(Stream(range(10)).map(str).filter()) == 3

as functions

The Stream's methods are also exposed as functions:

from streamable.functions import catch

inverse_integers: Iterator[int] = map(lambda n: 1 / n, range(10))
safe_inverse_integers: Iterator[int] = catch(inverse_integers, ZeroDivisionError)

compatible with free-threaded Python 3.13+

Benefits from free-threaded Python 3.13+ builds, run via python -X gil=0.

ty highlighters 🙏