A statistical and data mining tool for Apache ECharts. You can use it to analyze data and then visualize the results with ECharts, or just use it to process data.
It works both in node.js and in the browser.
Read this in other languages: English, 简体中文.
If you use npm, you can install it with:
npm install echarts-stat
Otherwise, download this tool from dist directory:
<script src='./dist/ecStat.js'></script>
<script>
var result = ecStat.clustering.hierarchicalKMeans(data, clusterNumber, false);
</script>
If using bundler (like webpack, rollup, etc.), for example:
npm install echarts-stat
npm install echarts
import * as echarts from 'echarts';
import {transform} from 'echarts-stat';
echarts.registerTransform(transform.histogram);
var myChart = echarts.init(document.getElementById('main0'));
var option = {
dataset: [{
source: [
[8.3, 143], [8.6, 214], [8.8, 251], [10.5, 26], [10.7, 86], [10.8, 93], [11.0, 176], [11.0, 39], [11.1, 221], [11.2, 188], [11.3, 57], [11.4, 91], [11.4, 191], [11.7, 8], [12.0, 196], [12.9, 177], [12.9, 153], [13.3, 201], [13.7, 199], [13.8, 47], [14.0, 81], [14.2, 98], [14.5, 121], [16.0, 37], [16.3, 12], [17.3, 105], [17.5, 168], [17.9, 84], [18.0, 197], [18.0, 155], [20.6, 125]
]
}, {
transform: {
type: 'ecStat:histogram'
}
}],
tooltip: {
},
xAxis: {
type: 'category',
scale: true
},
yAxis: {},
series: {
name: 'histogram',
type: 'bar',
barWidth: '99.3%',
label: {
show: true,
position: 'top'
},
datasetIndex: 1
}
};
myChart.setOption(option);
A histogram is a graphical representation of the distribution of numerical data. It is an estimate of the probability distribution of a quantitative variable. It is a kind of bar graph. To construct a histogram, the first step is to "bin" the range of values - that is, divide the entire range of values into a series of intervals - and then count how many original sample values fall into each interval. The bins are usually specified as consecutive, non-overlapping intervals of a variable. Here the bins(intervals) must be adjacent, and are of equal size.
echarts.registerTransform(ecStat.transform.histogram);
chart.setOption({
dataset: [{
source: data
}, {
type: 'ecStat:histogram',
config: config
}],
...
});
var bins = ecStat.histogram(data, config);
// or
var bins = ecStat.histogram(data, method);
data
- number[] | number[][]
. Data samples of numbers.
// One-dimension array
var data = [8.6, 8.8, 10.5, 10.7, 10.8, 11.0, ... ];
or
// Two-dimension array
var data = [[8.3, 143], [8.6, 214], ...];
config
- object
.
config.method
- 'squareRoot' | 'scott' | 'freedmanDiaconis' | 'sturges'
. Optional. Methods to calculate the number of bin. There is no "best" number of bin, and different bin size can reveal different feature of data.
squareRoot
- This is the default method, which is also used by Excel histogram. Returns the number of bin according to Square-root choice:
var bins = ecStat.histogram(data);
scott
- Returns the number of bin according to Scott's normal reference Rule:
var bins = ecStat.histogram(data, 'scott');
freedmanDiaconis
- Returns the number of bin according to The Freedman-Diaconis rule:
var bins = ecStat.histogram(data, 'freedmanDiaconis');
sturges
- Returns the number of bin according to Sturges' formula:
var bins = ecStat.histogram(data, 'sturges');
config.dimensions
- (number | string)
. Optional. Specify the dimensions of data that are used to regression calculation. By default 0
, which means the column 0 and 1 is used in the regression calculation. In echarts transform usage, both dimension name (string
) and dimension index (number
) can be specified. In standalone usage, only dimension index can be specified (not able to define dimension name).
dataset: [{
source: [...]
}, {
transform: 'ecStat:histogram'
// // The result data of this dataset is like:
// [
// // MeanOfV0V1, VCount, V0, V1, DisplayableName
// [ 10, 212 8, 12, '8 - 12'],
// ...
// ]
// // The rest of the input dimensions that other than
// // config.dimensions specified are kept in the output.
}]
result
- object
. Contain detailed messages of each bin and data used for ECharts to draw the histogram.
result.bins
- BinItem[]
. An array of bins, where each bin is an object (BinItem
), containing three attributes:
x0
- number
. The lower bound of the bin (inclusive).x1
- number
. The upper bound of the bin (exclusive).sample
- number[]
. Containing the associated elements from the input data.result.data
- [MeanOfV0V1, VCount, V0, V1, DisplayableName][]
. Used for bar chart to draw the histogram, where the length of sample
is the number of sample values in this bin. For example:
var bins.data = [
// MeanOfV0V1, VCount, V0, V1, DisplayableName
[ 10, 212, 8, 12, '8 - 12'],
...
];
// The rest of the input dimensions that other than
// config.dimensions specified are kept in the output.
result.customData
- [V0, V1, VCount][]
. Used for custom chart to draw the histogram, where the length of sample
is the number of sample values in this bin.test/transform/histogram_bar.html
test/standalone/histogram_bar.html
Clustering can divide the original data set into multiple data clusters with different characteristics. And through ECharts, you can visualize the results of clustering, or visualize the process of clustering.
echarts.registerTransform(ecStat.transform.clustering);
chart.setOption({
dataset: [{
source: data
}, {
type: 'ecStat:clustering',
config: config
}],
...
});
var result = ecStat.clustering.hierarchicalKMeans(data, config);
// or
var result = ecStat.clustering.hierarchicalKMeans(data, clusterCount, stepByStep);
data
- number[][]
. Two-dimensional numeric array, each data point can have more than two numeric attributes in the original data set. In the following example, data[0]
is called data point
and data[0][1]
is one of the numeric attributes of data[0]
.
var data = [
[232, 4.21, 51, 0.323, 19],
[321, 1.62, 18, 0.139, 10],
[551, 11.21, 13, 0.641, 15],
...
];
config
- object
.
config.clusterCount
- number
. Mandatory. The number of clusters generated. Note that it must be greater than 1.config.dimensions
- (number | string)[]
. Optional. Specify which dimensions (columns) of data will be used to clustering calculation. The other columns will also be kept in the output data. By default all of the columns of the data will be used as dimensions. In echarts transform usage, both dimension name (string
) and dimension index (number
) can be specified. In standalone usage, only dimension index can be specified (not able to define dimension name).config.stepByStep
- boolean
. Optional. Control whether doing the clustering step by step. By default false
.config.outputType
- 'single' | 'multiple'
. Optional. Specify the format of the output. In "standalone" usage, it is by default 'multiple'
. In "transform" usage, it can not be specified, always be 'single'
.config.outputClusterIndexDimension
- (number | {index: number, name?: string})
. Mandatory. It only works in config.outputType: 'single'
. In this mode, the cluster index will be written to that dimension index of the output data. If be a number
, it means dimension index. Dimension index is mandatory, while dimension name is optional, which only enables the downstream refer this dimension by name.config.outputCentroidDimensions
- (number | {index: number, name?: string})[]
Optional. It only works in config.outputType: 'single'
. If specify, the cluster centroid will be written to those dimensions of the result data. By default the centroids will not be written to the result data. If be a number
, it means dimension index. Dimension index is mandatory, while dimension name is optional, which only enables the downstream refer this dimension by name.For example, the input data is:
var data = [
// dimensions:
// 0 1 2 3 4
[ 232, 4.21, 51, 0.323, 'xxx'],
[ 321, 1.62, 18, 0.139, 'xzx'],
[ 551, 11.21, 13, 0.641, 'yzy'],
...
];
And we specify the config
as:
config = {
dimensions: [2, 3],
outputClusterIndexDimension: 5
}
The result will be:
dataset: [{
source: [ ... ],
}, {
transform: 'ecStat:clustering',
config: {
clusterCount: 6,
outputClusterIndexDimension: 5,
outputCentroidDimensions: [6, 7]
}
// The result data of this dataset will be:
// [
// // dim2, dim3 are used in clustering.
// // All of the input data are kept in the output.
// // dim5 is the output cluster index.
// // dim6 is the output distance value.
// // dimensions:
// // 0 1 2 3 4 5 6 7
// [ 232, 4.21, 51, 0.323, 'xxx', 0, 14, 0.145 ],
// [ 321, 1.62, 18, 0.139, 'xzx', 2, 24, 0.321 ],
// [ 551, 11.21, 13, 0.641, 'yzy', 0, 14, 0.145 ],
// ...
// ]
}, {
fromDatasetIndex: 1,
fromTransformResult: 1
// The result data of this dataset will be:
// centroids: [
// // center of cluster0
// [14, 0.145],
// // center of cluster1
// [24, 0.321],
// ...
// ]
}]
outputType: 'single'
:
result
- object
. For example:
result = {
data: [
// dim2, dim3 are used in clustering.
// All of the input data are kept in the output.
// dim5 is the output cluster index.
// dim6 is the output distance value.
// dimensions:
// 0 1 2 3 4 5 6
[ 232, 4.21, 51, 0.323, 'xxx', 0, 89 ],
[ 321, 1.62, 18, 0.139, 'xzx', 2, 23 ],
[ 551, 11.21, 13, 0.641, 'yzy', 0, ?? ],
...
],
centroids: [
// center of cluster0
[14, 0.145],
// center of cluster1
[24, 0.321],
...
]
}
outputType: 'multiple'
:
result
- object
. Including the centroids, and pointsInCluster. For example:
result = {
pointsInCluster: [
// points in cluster0
[
[ 232, 4.21, 51, 0.323, 'xxx' ],
[ 551, 11.21, 13, 0.641, 'yzy' ],
...
],
// points in cluster1
[
[ 321, 1.62, 18, 0.139, 'xzx' ],
...
],
...
],
centroids: [
// center of cluster0
[14, 0.145],
// center of cluster1
[24, 0.321],
...
]
};
You can not only do cluster analysis through this interface, but also use ECharts to visualize the results.
Note: the clustering algorithm can handle multiple numeric attributes, but for the convenience of visualization, two numeric attributes are chosen here as an example.
test/transform/clustering_bikmeans.html
test/standalone/clustering_bikmeans.html
test/standalone/clustering_animation.html
Regression algorithm can according to the value of the dependent and independent variables of the data set, fitting out a curve to reflect their trends. The regression algorithm here only supports two numeric attributes.
echarts.registerTransform(ecStat.transform.regression);
chart.setOption({
dataset: [{
source: data
}, {
type: 'ecStat:regression',
config: {
method: regressionType,
...opt
}
}],
...
});
var myRegression = ecStat.regression(regressionType, data, opt);
// or
var myRegression = ecStat.regression('polynomial', data, order);
regressionType
- string
. Mandatory. There are four types of regression, which are 'linear'
, 'exponential'
, 'logarithmic'
, 'polynomial'
.data
- number[][]
. Two-dimensional numeric array, Each data object should have two numeric attributes in the original data set. For Example:
var data = [
[1, 2],
[3, 5],
...
];
opt
- object
.
opt.dimensions
- (number | string)[] | (number | string)
. Optional. Specify the dimensions of data that are used to regression calculation. By default [0, 1]
, which means the column 0 and 1 is used in the regression calculation. In echarts transform usage, both dimension name (string
) and dimension index (number
) can be specified. In standalone usage, only dimension index can be specified (not able to define dimension name).opt.order
- number
. Optional. By default 2
. The order of polynomial. If you choose other types of regression, you can ignore it.dataset: [{
source: [...]
}, {
transform: 'ecStat:regression',
// // The result of this dataset is like:
// [
// // ValueOnX, ValueOnY
// [ 23, 51 ],
// [ 24, 62 ],
// ...
// ]
// // The rest of the input dimensions that other than
// // config.dimensions specified are kept in the output.
}]
Standalone
myRegression
- object
. Including points, parameter, and expression. For Example:
myRegression.points = [
// ValueOnX, ValueOnY
[ 23, 51 ],
[ 24, 62 ],
...
];
// The rest of the input dimensions that other than
// config.dimensions specified are kept in the output.
// This is the parameter of linear regression,
// for other types, it should be a little different
myRegression.parameter = {
gradient: 1.695,
intercept: 3.008
};
myRegression.expression = 'y = 1.7x + 3.01';
You can not only do regression analysis through this interface, you can also use ECharts to visualize the results.
test/transform/regression_linear.html
test/standalone/regression_linear.html
test/transform/regression_exponential.html
test/standalone/regression_exponential.html
test/transform/regression_logarithmic.html
test/standalone/regression_logarithmic.html
test/transform/regression_polynomial.html
test/standalone/regression_polynomial.html
This interface provides basic summary statistical services.
var sampleDeviation = ecStat.statistics.deviation(dataList);
dataList
: number[]
sampleDeviation
: number
. Return the deviation of the numeric array dataList. If the dataList is empty or the length less than 2, return 0.var varianceValue = ecStat.statistics.sampleVariance(dataList);
dataList
: number[]
varianceValue
: number
. Return the variance of the numeric array dataList. If the dataList is empty or the length less than 2, return 0.var quantileValue = ecStat.statistics.quantile(dataList, p);
dataList
: number[]
. Sorted array of numbers.p
: number
. where 0 =< p <= 1. For example, the first quartile at p = 0.25, the seconed quartile at p = 0.5(same as the median), and the third quartile at p = 0.75.quantileValue
: number
. Return the quantile of the sorted array of numbers. If p <= 0 or the length of dataList less than 2, return the first element of the sorted array dataList; if p >= 1, return the last element of the sorted array dataList; If dataList is empty, return 0.var maxValue = ecStat.statistics.max(dataList);
dataList
: number[]
maxValue
: number
. The maximum value of the dataList.var minValue = ecStat.statistics.min(dataList);
dataList
: number[]
minValue
: number
. The minimum value of the dataList.var meanValue = ecStat.statistics.mean(dataList);
dataList
: number[]
meanValue
: number
. The average of the dataList.var medianValue = ecStat.statistics.median(dataList);
dataList
: number[]
. Sorted array of numbersmedianValue
: number
. The median of the dataList.var sumValue = ecStat.statistics.sum(dataList);
dataList
: number[]
sumValue
: number
. The sum of the dataList.The Apache Software Foundation Apache ECharts, ECharts, Apache, the Apache feather, and the Apache ECharts project logo are either registered trademarks or trademarks of the Apache Software Foundation.