Learning Dynamic Graph Representation of Brain Connectome with Spatio-Temporal Attention \ Byung-Hoon Kim, Jong Chul Ye, Jae-Jin Kim \ presented at NeurIPS 2021 \ arXiv, OpenReview, proceeding
The fMRI data used for the experiments of the paper should be downloaded from the Human Connectome Project.
data (specified by option --sourcedir)
├─── behavioral
│ ├─── hcp.csv
│ ├─── hcp_taskrest_EMOTION.csv
│ ├─── hcp_taskrest_GAMBLING.csv
│ ├─── ...
│ └─── hcp_taskrest_WM.csv
├─── img
│ ├─── REST
│ │ ├─── 123456.nii.gz
│ │ ├─── 234567.nii.gz
│ │ ├─── ...
│ │ └─── 999999.nii.gz
│ └─── TASK
│ ├─── EMOTION
│ │ ├─── 123456.nii.gz
│ │ ├─── 234567.nii.gz
│ │ ├─── ...
│ │ └─── 999999.nii.gz
│ ├─── GAMBLING
│ │ ├─── ...
│ │ └─── 999999.nii.gz
│ ├─── ...
│ └─── WM
│ ├─── ...
│ └─── 999999.nii.gz
└───roi
└─── 7_400_coord.csv
| Subject | Gender |
|---------|--------|
| 123456 | F |
| 234567 | M |
| ...... | ...... |
| 999999 | F |
| Task | Rest |
|------|------|
| 0 | 1 |
| 0 | 1 |
| ... | ... |
| 1 | 0 |
| ROI Index | Label Name | R | A | S |
|-----------|----------------------------|---|---|---|
| 0 | NONE | NA| NA| NA|
| 1 | 7Networks_LH_Vis_1 |-32|-42|-20|
| 2 | 7Networks_LH_Vis_2 |-30|-32|-18|
| ... | ......... | . | . | . |
| 400 | 7Networks_RH_Default_PCC_9 | 8 |-50| 44|
Run the main script to perform experiments
python main.py
Command-line options can be listed with -h flag.
python main.py -h
For brainplot:
5c262d8d
: Top k-percentile values from the adjacency matrix is now calculated without the need for calling .detach().cpu().numpy()
which improves computation speed.2aa53b9
-40e2bc6
: Added dataset classes for ukb-rest, abide, and fmriprep; Implemented regression experiments.egyptdj@yonsei.ac.kr