eldar / deepcut-cnn

CNN architecture for articulated human pose estimation
Other
193 stars 67 forks source link

DeeperCut Part Detectors

This short documentation describes steps necessary to compile and run CNN-based body part detectors presented in the DeeperCut paper:

Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres, Mykhaylo Andriluka, and Bernt Schiele
DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model
In European Conference on Computer Vision (ECCV), 2016

For more information visit http://pose.mpi-inf.mpg.de

Installation Instructions

Download Caffe Models

$ cd models/deepercut
$ ./download_models.sh

Run Demo

$ cd python/pose
$ python ./pose_demo.py image.png --out_name=prediction

Citing

@inproceedings{insafutdinov2016deepercut,
    author = {Eldar Insafutdinov and Leonid Pishchulin and Bjoern Andres and Mykhaylo Andriluka and Bernt Schieke},
    title = {DeeperCut: A Deeper, Stronger, and Faster Multi-Person Pose Estimation Model},
    booktitle = {European Conference on Computer Vision (ECCV)},
    year = {2016},
    url = {http://arxiv.org/abs/1605.03170}
    }
@inproceedings{pishchulin16cvpr,
    author = {Leonid Pishchulin and Eldar Insafutdinov and Siyu Tang and Bjoern Andres and Mykhaylo Andriluka and Peter Gehler and Bernt Schiele},
    title = {DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation},
    booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
    year = {2016},
    url = {http://arxiv.org/abs/1511.06645}
}