embray / gappy

Python interface to GAP
GNU General Public License v3.0
13 stars 5 forks source link

|logo|

################################# gappy — a Python interface to GAP #################################

|docs-badge| |tests-badge|

gappy provides a Python interface to the GAP <https://www.gap-system.org/>_ computer algebra system by linking to its library interface.

It allows calling functions in GAP directly from Python, and passing supported Python objects back to GAP.

gappy is based on SageMath's LibGAP <https://doc.sagemath.org/html/en/reference/libs/sage/libs/gap/libgap.html>_ interface to GAP, originally developed by Volker Braun, but is completely independent of Sage--it does not require or use Sage at all, and can be used in any Python code. If there is enough interest, it may also be enhanced with a complementary GAP package for interacting with Python from within GAP.

.. contents:: :local: :depth: 3

Quickstart

To start using GAP functions from Python, just run:

.. code-block:: python

>>> from gappy import gap

Then any global variable in GAP, including functions, can be accessed as attributes on gap like:

.. code-block:: python

>>> gap.Cite()
Please use one of the following samples
to cite GAP version from this installation

Text:

[GAP] GAP – Groups, Algorithms, and Programming, Version 4.dev, The GAP Group, https://www.gap-system.org.
...

All global variables that would be available in a GAP session can be accessed in this way:

.. code-block:: python

>>> gap.GAPInfo.Version
"4.dev"

Most basic Python types have direct equivalents in GAP, and can be passed directly to GAP functions without explicit conversion to their equivalent GAP types:

.. code-block:: python

>>> S4 = gap.SymmetricGroup(4)
>>> S4
Sym( [ 1 .. 4 ] )

You can also call "methods" on GapObj\s. This is just syntactic sugar for calling a GAP function with that object as its first argument, in cases where that function supports the object bound to the method. For example:

.. code-block:: python

>>> S4.GeneratorsOfGroup()
[ (1,2,3,4), (1,2) ]

Values returned from GAP functions are GAP objects wrapped in a Python class for containing them called GapObj:

.. code-block:: python

>>> type(S4)
<class 'gappy.gapobj.GapObj'>

There are also specialized subclasses of GapObj for many types of objects in GAP. To explicitly convert a Python object directly to its GAP equivalent, you can call gap like:

.. code-block:: python

>>> one = gap(1)
>>> type(one)
<class 'gappy.gapobj.GapInteger'>

GAP objects are displayed (with repr) or stringified (with str) the same way they would be in GAP, when displaying the object in the REPL or when calling GAP's Print() function on the object, respectively:

.. code-block:: python

>>> one
1
>>> s = gap("Hello GAP!")
>>> s
"Hello GAP!"
>>> print(s)
Hello GAP!

Not all GAP objects have an equivalent in basic Python types, so there is no implicit conversion from GAP back to Python. However, all Python types that can be converted to GAP objects can be converted back to their equivalent Python types in a symmetrical manner:

.. code-block:: python

>>> int(one)
1
>>> type(int(one))
<class 'int'>
>>> str(s)
'Hello GAP!'
>>> type(str(s))
<class 'str'>

Likewise for float\s, list\s, dict\s, among others.

You can also call obj.python() to convert to its equivalent Python type if one exists:

.. code-block:: python

>>> type(one.python())
<class 'int'>

To register your own converters for GAP objects to custom Python types, see the gap.convert_to decorator.

Finally, you can execute arbitrary GAP code directly with gap.eval. This is often the easiest way to construct more complicated GAP objects, especially if you are more familiar with GAP syntax. The return value of gap.eval is the result of evaluating the same statement in GAP (the semicolon is optional when evaluating a single statement):

.. code-block:: python

>>> rec = gap.eval('rec(a:=123, b:=456, Sym3:=SymmetricGroup(3))')
>>> rec['Sym3']
Sym( [ 1 .. 3 ] )

This is also an easy way to declare new GAP functions from gappy:

.. code-block:: python

>>> sign = gap.eval("""sign := function(n)
...     if n < 0 then
...         return -1;
...     elif n = 0 then
...         return 0;
...     else
...         return 1;
...     fi;
... end;""")
>>> sign
<GAP function "sign">
>>> sign(0)
0
>>> sign(-99)
-1

See the full API documentation for many additional examples of how to use the gap object as well as the built-in GapObj types.

Installation

.. note::

These instructions will be updated once there are releases on PyPI.

Prerequisites

It is possible to install from PyPI (note the distribution name gappy-system, do not install the package "gappy" which is an unrelated obsolete package):

.. code-block:: shell

$ pip install gappy-system

or from source:

.. code-block:: shell

$ git clone https://github.com/embray/gappy.git
$ cd gappy/
$ pip install .

However, depending on how GAP is installed, some extra steps may be required. In particular, if you installed GAP from source using the typical instructions on the GAP website <https://www.gap-system.org/Download/index.html>_ you will need to make sure the libgap shared library is built by running:

.. code-block:: shell

$ make install-libgap

in the GAP source directory.

You will also need to point to the location of your GAP installation by setting the GAP_ROOT environment variable like:

.. code-block:: shell

$ GAP_ROOT=<path/to/gap/root> pip install .

If you needed to provide GAP_ROOT for the installation, it is also generally necessary to set this environment variable before using gappy, so that it can find the path to your GAP installation. See the documentation for the Gap class for more information.

If using GAP from a distribution system such as APT on Debian/Ubuntu or from Conda, however, the GAP library (libgap) is typically installed in a standard system location, and it may not be necessary to provide GAP_ROOT. See the next section for example.

Conda installation

To give an example of the above point, you can install gappy in a Conda environment as follows:

.. code-block:: shell

$ conda create -n gap
$ conda activate gap
$ conda install -c conda-forge gap-defaults==4.11 python==3.8
$ pip install .

Alternatively, you can create the conda environment using the supplied environment.yml <https://github.com/embray/gappy/blob/master/environment.yml>_ file:

.. code-block:: shell

$ conda env create

.. note::

With Conda and other distributions that install libgap to a standard
system location (e.g. ``/usr/lib/libgap.so``) it may not be necessary to
set the ``GAP_ROOT`` environment variable, as the library can locate
your GAP root automatically in most cases.

.. warning::

The conda package for GAP 4.11 had dependency conflicts with Python 3.7
so you must use Python 3.8 or above, or GAP 4.10.2 with Python 3.7.

Cygwin installation

Additional notes for installation on Cygwin:

.. |logo| image:: https://raw.githubusercontent.com/embray/gappy/master/docs/images/gappy-logo.svg.png :alt: gappy logo :align: middle

.. |docs-badge| image:: https://readthedocs.org/projects/gappy/badge/?version=latest :target: https://gappy.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status

.. |tests-badge| image:: https://github.com/embray/gappy/workflows/Tests/badge.svg :target: https://github.com/embray/gappy/actions?query=workflow%3ATests :alt: Test Status