embulk / embulk-output-bigquery

Embulk output plugin to load/insert data into Google BigQuery
MIT License
127 stars 58 forks source link
bigquery embulk jruby

embulk-output-bigquery

Embulk output plugin to load/insert data into Google BigQuery using direct insert

Overview

load data into Google BigQuery as batch jobs for big amount of data https://developers.google.com/bigquery/loading-data-into-bigquery

Supported Embulk

gem version Embulk version
0.7.0 and higher v0.11.0 and higher
0.6.9 and lower v0.9.X and lower

NOT IMPLEMENTED

Current version of this plugin supports Google API with Service Account Authentication, but does not support OAuth flow for installed applications.

Configuration

Original options

name type required? default description
mode string optional "append" See Mode
auth_method string optional "application_default" See Authentication
json_keyfile string optional keyfile path or content
project string required unless service_account's json_keyfile is given. project_id
destination_project string optional project value A destination project to which the data will be loaded. Use this if you want to separate a billing project (the project value) and a destination project (the destination_project value).
dataset string required dataset
location string optional nil geographic location of dataset. See Location
table string required table name, or table name with a partition decorator such as table_name$20160929
auto_create_dataset boolean optional false automatically create dataset
auto_create_table boolean optional true false is available only for append_direct mode. Other modes require true. See Dynamic Table Creating and Time Partitioning
schema_file string optional /path/to/schema.json
template_table string optional template table name. See Dynamic Table Creating
job_status_max_polling_time int optional 3600 sec Max job status polling time
job_status_polling_interval int optional 10 sec Job status polling interval
is_skip_job_result_check boolean optional false Skip waiting Load job finishes. Available for append, or delete_in_advance mode
with_rehearsal boolean optional false Load rehearsal_counts records as a rehearsal. Rehearsal loads into REHEARSAL temporary table, and delete finally. You may use this option to investigate data errors as early stage as possible
rehearsal_counts integer optional 1000 Specify number of records to load in a rehearsal
abort_on_error boolean optional true if max_bad_records is 0, otherwise false Raise an error if number of input rows and number of output rows does not match
column_options hash optional See Column Options
default_timezone string optional UTC
default_timestamp_format string optional %Y-%m-%d %H:%M:%S.%6N
payload_column string optional nil See Formatter Performance Issue
payload_column_index integer optional nil See Formatter Performance Issue
gcs_bucket string optional nil See GCS Bucket
auto_create_gcs_bucket boolean optional false See GCS Bucket
progress_log_interval float optional nil (Disabled) Progress log interval. The progress log is disabled by nil (default). NOTE: This option may be removed in a future because a filter plugin can achieve the same goal
description string optional nil description of table

Client or request options

name type required? default description
open_timeout_sec integer optional 300 Seconds to wait for the connection to open
timeout_sec integer optional 300 Seconds to wait for one block to be read (google-api-ruby-client < v0.11.0)
send_timeout_sec integer optional 300 Seconds to wait to send a request (google-api-ruby-client >= v0.11.0)
read_timeout_sec integer optional 300 Seconds to wait to read a response (google-api-ruby-client >= v0.11.0)
retries integer optional 5 Number of retries
application_name string optional "Embulk BigQuery plugin" User-Agent
sdk_log_level string optional nil (WARN) Log level of google api client library

Options for intermediate local files

name type required? default description
path_prefix string optional Path prefix of local files such as "/tmp/prefix_". Default randomly generates with tempfile
sequence_format string optional .%d.%d Sequence format for pid, thread id
file_ext string optional The file extension of local files such as ".csv.gz" ".json.gz". Default automatically generates from source_format and compression
skip_file_generation boolean optional Load already generated local files into BigQuery if available. Specify correct path_prefix and file_ext.
delete_from_local_when_job_end boolean optional true If set to true, delete generate local files when job is end
compression string optional "NONE" Compression of local files (GZIP or NONE)

Options for intermediate tables on BigQuery

name type required? default description
temporary_table_expiration integer optional Temporary table's expiration time in seconds

source_format is also used to determine formatter (csv or jsonl).

Same options of bq command-line tools or BigQuery job's property

Following options are same as bq command-line tools or BigQuery job's property.

name type required? default description
source_format string required "CSV" File type (NEWLINE_DELIMITED_JSON or CSV)
max_bad_records int optional 0
field_delimiter char optional ","
encoding string optional "UTF-8" UTF-8 or ISO-8859-1
ignore_unknown_values boolean optional false
allow_quoted_newlines boolean optional false Set true, if data contains newline characters. It may cause slow procsssing
time_partitioning hash optional {"type":"DAY"} if table parameter has a partition decorator, otherwise nil See Time Partitioning
time_partitioning.type string required nil The only type supported is DAY, which will generate one partition per day based on data loading time.
time_partitioning.expiration_ms int optional nil Number of milliseconds for which to keep the storage for a partition.
time_partitioning.field string optional nil DATE or TIMESTAMP column used for partitioning
clustering hash optional nil Currently, clustering is supported for partitioned tables, so must be used with time_partitioning option. See clustered tables
clustering.fields array required nil One or more fields on which data should be clustered. The order of the specified columns determines the sort order of the data.
schema_update_options array optional nil (Experimental) List of ALLOW_FIELD_ADDITION or ALLOW_FIELD_RELAXATION or both. See jobs#configuration.load.schemaUpdateOptions. NOTE for the current status: schema_update_options does not work for copy job, that is, is not effective for most of modes such as append, replace and replace_backup. delete_in_advance deletes origin table so does not need to update schema. Only append_direct can utilize schema update.

Example

out:
  type: bigquery
  mode: append
  auth_method: service_account
  json_keyfile: /path/to/json_keyfile.json
  project: your-project-000
  dataset: your_dataset_name
  table: your_table_name
  compression: GZIP
  source_format: NEWLINE_DELIMITED_JSON

Location

The geographic location of the dataset. Required except for US and EU.

GCS bucket should be in same region when you use gcs_bucket.

See also Dataset Locations | BigQuery | Google Cloud

Mode

5 modes are provided.

append
  1. Load to temporary table (Create and WRITE_APPEND in parallel)
  2. Copy temporary table to destination table (or partition). (WRITE_APPEND)
append_direct
  1. Insert data into existing table (or partition) directly. (WRITE_APPEND in parallel)

This is not transactional, i.e., if fails, the target table could have some rows inserted.

replace
  1. Load to temporary table (Create and WRITE_APPEND in parallel)
  2. Copy temporary table to destination table (or partition). (WRITE_TRUNCATE)

is_skip_job_result_check must be false when replace mode

NOTE: BigQuery does not support replacing (actually, copying into) a non-partitioned table with a paritioned table atomically. You must once delete the non-partitioned table, otherwise, you get Incompatible table partitioning specification when copying to the column partitioned table error.

replace_backup
  1. Load to temporary table (Create and WRITE_APPEND in parallel)
  2. Copy destination table (or partition) to backup table (or partition). (dataset_old, table_old)
  3. Copy temporary table to destination table (or partition). (WRITE_TRUNCATE)

is_skip_job_result_check must be false when replace_backup mode.

delete_in_advance
  1. Delete destination table (or partition), if it exists.
  2. Load to destination table (or partition).

Authentication

There are four authentication methods

  1. service_account (or json_key for backward compatibility)
  2. authorized_user
  3. compute_engine
  4. application_default

service_account (or json_key)

Use GCP service account credentials. You first need to create a service account, download its json key and deploy the key with embulk.

out:
  type: bigquery
  auth_method: service_account
  json_keyfile: /path/to/json_keyfile.json

You can also embed contents of json_keyfile at config.yml.

out:
  type: bigquery
  auth_method: service_account
  json_keyfile:
    content: |
      {
          "private_key_id": "123456789",
          "private_key": "-----BEGIN PRIVATE KEY-----\nABCDEF",
          "client_email": "..."
      }

authorized_user

Use Google user credentials. You can get your credentials at ~/.config/gcloud/application_default_credentials.json by running gcloud auth login.

out:
  type: bigquery
  auth_method: authorized_user
  json_keyfile: /path/to/credentials.json

You can also embed contents of json_keyfile at config.yml.

out:
  type: bigquery
  auth_method: authorized_user
  json_keyfile:
    content: |
      {
        "client_id":"xxxxxxxxxxx.apps.googleusercontent.com",
        "client_secret":"xxxxxxxxxxx",
        "refresh_token":"xxxxxxxxxxx",
        "type":"authorized_user"
      }

compute_engine

On the other hand, you don't need to explicitly create a service account for embulk when you run embulk in Google Compute Engine. In this third authentication method, you need to add the API scope "https://www.googleapis.com/auth/bigquery" to the scope list of your Compute Engine VM instance, then you can configure embulk like this.

out:
  type: bigquery
  auth_method: compute_engine

application_default

Use Application Default Credentials (ADC). ADC is a strategy to locate Google Cloud Service Account credentials.

  1. ADC checks to see if the environment variable GOOGLE_APPLICATION_CREDENTIALS is set. If the variable is set, ADC uses the service account file that the variable points to.
  2. ADC checks to see if ~/.config/gcloud/application_default_credentials.json is located. This file is created by running gcloud auth application-default login.
  3. Use the default service account for credentials if the application running on Compute Engine, App Engine, Kubernetes Engine, Cloud Functions or Cloud Run.

See https://cloud.google.com/docs/authentication/production for details.

out:
  type: bigquery
  auth_method: application_default

Table id formatting

table and option accept Time#strftime format to construct table ids. Table ids are formatted at runtime using the local time of the embulk server.

For example, with the configuration below, data is inserted into tables table_20150503, table_20150504 and so on.

out:
  type: bigquery
  table: table_%Y%m%d

Dynamic table creating

There are 3 ways to set schema.

Set schema.json

Please set file path of schema.json.

out:
  type: bigquery
  auto_create_table: true
  table: table_%Y%m%d
  schema_file: /path/to/schema.json

Set template_table in dataset

Plugin will try to read schema from existing table and use it as schema template.

out:
  type: bigquery
  auto_create_table: true
  table: table_%Y%m%d
  template_table: existing_table_name

Guess from Embulk Schema

Plugin will try to guess BigQuery schema from Embulk schema. It is also configurable with column_options. See Column Options.

Column Options

Column options are used to aid guessing BigQuery schema, or to define conversion of values:

Example)

out:
  type: bigquery
  auto_create_table: true
  column_options:
    - {name: date, type: STRING, timestamp_format: %Y-%m-%d, timezone: "Asia/Tokyo"}
    - name: json_column
      type: RECORD
      fields:
        - {name: key1, type: STRING}
        - {name: key2, type: STRING}

NOTE: Type conversion is done in this jruby plugin, and could be slow. See Formatter Performance Issue to improve the performance.

Formatter Performance Issue

embulk-output-bigquery supports formatting records into CSV or JSON (and also formatting timestamp column). However, this plugin is written in jruby, and jruby plugins are slower than java plugins generally.

Therefore, it is recommended to format records with filter plugins written in Java such as embulk-filter-to_json as:

filters:
  - type: to_json
    column: {name: payload, type: string}
    default_format: "%Y-%m-%d %H:%M:%S.%6N"
out:
  type: bigquery
  payload_column_index: 0 # or, payload_column: payload

Furtheremore, if your files are originally jsonl or csv files, you can even skip a parser with embulk-parser-none as:

in:
  type: file
  path_prefix: example/example.jsonl
  parser:
    type: none
    column_name: payload
out:
  type: bigquery
  payload_column_index: 0 # or, payload_column: payload

GCS Bucket

This is useful to reduce number of consumed jobs, which is limited by 100,000 jobs per project per day.

This plugin originally loads local files into BigQuery in parallel, that is, consumes a number of jobs, say 24 jobs on 24 CPU core machine for example (this depends on embulk parameters such as min_output_tasks and max_threads).

BigQuery supports loading multiple files from GCS with one job, therefore, uploading local files to GCS in parallel and then loading from GCS into BigQuery reduces number of consumed jobs to 1.

Using gcs_bucket option, such strategy is enabled. You may also use auto_create_gcs_bucket to create the specified GCS bucket automatically.

out:
  type: bigquery
  gcs_bucket: bucket_name
  auto_create_gcs_bucket: true

ToDo: Use https://cloud.google.com/storage/docs/streaming if google-api-ruby-client supports streaming transfers into GCS.

Time Partitioning

From 0.4.0, embulk-output-bigquery supports to load into partitioned table. See also Creating and Updating Date-Partitioned Tables.

To load into a partition, specify table parameter with a partition decorator as:

out:
  type: bigquery
  table: table_name$20160929

You may configure time_partitioning parameter together as:

out:
  type: bigquery
  table: table_name$20160929
  time_partitioning:
    type: DAY
    expiration_ms: 259200000

You can also create column-based partitioning table as:

out:
  type: bigquery
  mode: replace
  table: table_name
  time_partitioning:
    type: DAY
    field: timestamp

Note the time_partitioning.field should be top-level DATE or TIMESTAMP.

Use Tables: patch API to update the schema of the partitioned table, embulk-output-bigquery itself does not support it, though. Note that only adding a new column, and relaxing non-necessary columns to be NULLABLE are supported now. Deleting columns, and renaming columns are not supported.

MEMO: jobs#configuration.load.schemaUpdateOptions is available to update the schema of the desitination table as a side effect of the load job, but it is not available for copy job. Thus, it was not suitable for embulk-output-bigquery idempotence modes, append, replace, and replace_backup, sigh.

Development

Run example:

Prepare a json_keyfile at example/your-project-000.json, then

$ embulk bundle install --path vendor/bundle
$ embulk run -X page_size=1 -b . -l trace example/example.yml

Run test:

Place your embulk with .jar extension:

$ curl -o embulk.jar --create-dirs -L "http://dl.embulk.org/embulk-latest.jar"
$ chmod a+x embulk.jar

Investigate JRUBY_VERSION and Bundler::VERSION included in the embulk.jar:

$ echo JRUBY_VERSION | ./embulk.jar irb
2019-08-10 00:59:11.866 +0900: Embulk v0.9.17
Switch to inspect mode.
JRUBY_VERSION
"X.X.X.X"

$ echo "require 'bundler'; Bundler::VERSION" | ./embulk.jar irb
2019-08-10 01:59:10.460 +0900: Embulk v0.9.17
Switch to inspect mode.
require 'bundler'; Bundler::VERSION
"Y.Y.Y"

Install the same version of jruby (change X.X.X.X to the version shown above) and bundler:

$ rbenv install jruby-X.X.X.X
$ rbenv local jruby-X.X.X.X
$ gem install bundler -v Y.Y.Y

Install dependencies (NOTE: Use bundler included in the embulk.jar, otherwise, gem 'embulk' is not found):

$ ./embulk.jar bundle install --path vendor/bundle

Run tests with env RUBYOPT="-r ./embulk.jar:

$ bundle exec env RUBYOPT="-r ./embulk.jar" rake test

To run tests which actually connects to BigQuery such as test/test_bigquery_client.rb, prepare a json_keyfile at example/your-project-000.json, then

$ bundle exec env RUBYOPT="-r ./embulk.jar" ruby test/test_bigquery_client.rb
$ bundle exec env RUBYOPT="-r ./embulk.jar" ruby test/test_example.rb

Release gem:

Change the version of gemspec, and write CHANGELOG.md. Then,

$ bundle exec rake release

ChangeLog

CHANGELOG.md