The stackr
package provides an easy way to combine predictions from
individual time series or panel data models to an ensemble. stackr
stacks models according to the Continuous Ranked Probability Score
(CRPS) over k-step ahead predictions. It is therefore especially suited
for time-series and panel data. A function for leave-one-out CRPS may be
added in the future. Predictions need to be predictive distributions
represented by predictive samples. Usually, these will be sets of
posterior predictive simulation draws generated by an MCMC algorithm.
Install using
devtools::install_github("epiforecasts/stackr")
Given some training data with true observed values as well as predictive
samples generated from different models, stackr
finds the optimal (in
the sense of minimizing expected cross-validation predictive error)
weights to form an ensemble of these models. Using these weights,
stackr
can then provide samples from the optimal model mixture by
drawing from the predictive samples of those models in the correct
proportion. This gives a mixture model solely based on predictive
samples and is in this regard superior to other ensembling techniques
like Bayesian Model Averaging. More information can be found in the
package vignette.
Weights are generated using the crps_weights
function. With these
weights and predictive samples, the mixture_from_samples
function can
be used to obtain predictive samples from the optimal mixture model.
splitdate <- as.Date("2020-03-28")
traindata <- example_data[date <= splitdate]
testdata <- example_data[date > splitdate]
weights <- crps_weights(traindata)
test_mixture <- mixture_from_samples(testdata, weights = weights)
library("scoringutils")
# combine data.frame with mixture with predictions from other models
score_df <- rbindlist(list(testdata, test_mixture), fill = TRUE)
# score all predictions using from github.com/epiforecasts/scoringutils
score_df[, crps := crps(unique(observed), t(predicted)),
by = .(geography, model, date)
]
# summarise scores
score_df[, mean(crps), by = model][, setnames(.SD, "V1", "CRPS")]
All contributions to this project are gratefully acknowledged using the
allcontributors
package
following the all-contributors
specification. Contributions of any kind are welcome!