Prediction of antimicrobial potential using a dataset of 29537 compounds screened against the antibiotic resistant pathogen Burkholderia cenocepacia. The model uses the Chemprop Direct Message Passing Neural Network (D-MPNN) abd has an AUC score of 0.823 for the test set. It has been used to virtually screen the FDA approved drugs as well as a collection of natural product list (>200k compounds) with hit rates of 26% and 12% respectively.
eos5xng
chemprop-burkholderia
Compound
Single
Classification
Score
Float
Single
If you use this model, please cite the original authors of the model and the Ersilia Model Hub.
This package is licensed under a GPL-3.0 license. The model contained within this package is licensed under a GPL-3.0 license.
Notice: Ersilia grants access to these models 'as is' provided by the original authors, please refer to the original code repository and/or publication if you use the model in your research.
The Ersilia Open Source Initiative is a Non Profit Organization (1192266) with the mission is to equip labs, universities and clinics in LMIC with AI/ML tools for infectious disease research.
Help us achieve our mission!