esalman / autolabeller

This tool can automatically generate anatomical and functional labels of spatial maps of brain activity.
2 stars 2 forks source link

DOI

Autolabeller

This tool can automatically classify noisy spatial maps of brain activity, and generate anatomical and functional labels of the spatial maps and a reordered functional network connectivity matrix.

Prerequisites

Autolabeller is written in Matlab™ and requires several Matlab toolboxes to run. Please download the following toolboxes and add to your Matlab path.

Using the autolabeller

Example code can be found in src/example_label_ic.m.

% add requirements to path
addpath( genpath( '../bin/GroupICATv4.0b/' ) )      % GIFT toolbox
addpath( genpath( '../bin/CanlabCore' ) )       % Canlab toolbox
addpath( '../bin/spm12/' )      % SPM12 toolbox
addpath( '../bin/2019_03_03_BCT' )       % Brain connectivity toolbox
addpath( '../bin/autolabeller/' )       % add the autolabeller src folder only

% GICA example with fbirn dataset
clear params;
params.param_file = './fbirnp3_rest_ica_parameter_info.mat';
params.outpath = './results/fbirn/';
params.fit_method = 'mnr';
params.n_corr = 3;
params.skip_noise = 0;
params.skip_anatomical = 0;
params.skip_functional = 0;
params.noise_training_set = 'pre_fbirn_sub';
params.anatomical_atlas = 'aal';
params.threshold = 3;
params.functional_atlas = 'yeo_buckner';
disp( 'Running the autolabeller on FBIRN dataset' )
label_auto_main( params );

% Spatial map example with the Neuromark template
clear params;
params.sm_path = './NetworkTemplate_High_VarNor.nii';
params.mask_path = './Mask.img';
params.outpath = './results/neuromark/';
params.fit_method = 'mnr';
params.n_corr = 3;
params.skip_noise = 0;
params.skip_anatomical = 0;
params.skip_functional = 0;
params.noise_training_set = 'pre_aggregate';
params.anatomical_atlas = 'aal';
params.threshold = 3;
params.functional_atlas = 'yeo_buckner';
disp( 'Running the autolabeller on NeuroMark dataset' )
label_auto_main( params );

Parameters & outputs

Inputs

Outputs

The following files are written into params.outpath folder:

Result

The following figures are generated using the ./src/example_plot_fnc.m script. You can update the ICA parameter file and autolabeller output folder locations in the above to generate new figures. The script uses ICA parameter file to load the FNC from the ICA post-process result.

unsorted reordered icn

Customizing the output

The autolabeler outputs can be easily updated based on visual observation as follows:

This will generate the updated anatomical/functional label files and IC order for the FNC matrix.

Citation

Salman, M. S., Wager, T., Damaraju, E., Abrol, A., Vergara, V., Fu, Z., & Calhoun, V. (2021). An Approach to Automatically Label & Order Brain Activity/Component Maps. Brain Connectivity, brain.2020.0950. https://doi.org/10.1089/brain.2020.0950