.. image:: https://raw.githubusercontent.com/esi-neuroscience/syncopy/master/doc/source/_static/syncopy_logo_small.png :alt: Syncopy-Logo
|Conda Version| |PyPi Version| |License| |DOI|
.. |Conda Version| image:: https://img.shields.io/conda/vn/conda-forge/esi-syncopy.svg :target: https://anaconda.org/conda-forge/esi-syncopy .. |PyPI version| image:: https://badge.fury.io/py/esi-syncopy.svg :target: https://badge.fury.io/py/esi-syncopy .. |License| image:: https://img.shields.io/github/license/esi-neuroscience/syncopy .. |DOI| image:: https://zenodo.org/badge/DOI/10.5281/zenodo.8191941.svg :target: https://doi.org/10.5281/zenodo.8191941
|Master Tests| |Master Coverage|
.. |Master Tests| image:: https://github.com/esi-neuroscience/syncopy/actions/workflows/cov_test_workflow.yml/badge.svg?branch=master :target: https://github.com/esi-neuroscience/syncopy/actions/workflows/cov_test_workflow.yml .. |Master Coverage| image:: https://codecov.io/gh/esi-neuroscience/syncopy/branch/master/graph/badge.svg?token=JEI3QQGNBQ :target: https://codecov.io/gh/esi-neuroscience/syncopy
Syncopy aims to be a user-friendly toolkit for large-scale electrophysiology data-analysis in Python. We strive to achieve the following goals:
Syncopy is developed at the
Ernst Strüngmann Institute (ESI) gGmbH for Neuroscience in Cooperation with Max Planck Society <https://www.esi-frankfurt.de/>
_
and released free of charge under the
BSD 3-Clause "New" or "Revised" License <https://en.wikipedia.org/wiki/BSD_licenses#3-clause_license_(%22BSD_License_2.0%22,_%22Revised_BSD_License%22,_%22New_BSD_License%22,_or_%22Modified_BSD_License%22)>
_.
here on arxiv, with DOI 10.1101/2024.04.15.589590 <https://doi.org/10.1101/2024.04.15.589590>
_. Please cite this pre-print if you use Syncopy. In APA style, the citation is: Mönke, G., Schäfer, T., Parto-Dezfouli, M., Kajal, D. S., Fürtinger, S., Schmiedt, J. T., & Fries, P. (2024). Systems Neuroscience Computing in Python (SyNCoPy): A Python Package for Large-scale Analysis of Electrophysiological Data. bioRxiv, 2024-04.To report bugs or ask questions please use our GitHub issue tracker <https://github.com/esi-neuroscience/syncopy/issues>
_.
For general inquiries please contact syncopy (at) esi-frankfurt.de.
We recommend to install SynCoPy into a new conda environment:
Anaconda Distribution for your Operating System <https://www.anaconda.com/products/distribution>
_ if you do not yet have it.Anaconda navigator
, selecting Environments
in the left tab, selecting the base (root)
environment, and clicking the green play button and then Open Terminal
.bash
in your active terminal to start a new session.You should see a terminal with a command prompt that starts with (base)
, indicating that you are
in the conda base
environment.
Now we create a new environment named syncopy
and install syncopy into this environment:
.. code-block:: bash
conda create -y --name syncopy conda activate syncopy conda install -y -c conda-forge esi-syncopy
Please visit our online documentation <http://syncopy.org>
_.
To get the latest development version, please clone our GitHub repository and change to the dev
branch. We highly recommend to install into a new conda virtual environment, so that this development version does not interfere with your existing installation.
.. code-block:: bash
git clone https://github.com/esi-neuroscience/syncopy.git cd syncopy/ conda env create --name syncopy-dev --file syncopy.yml conda activate syncopy-dev pip install -e .
We recommend to verify your development installation by running the unit tests. You can skip the parallel tests to save some time, the tests should run in about 5 minutes then:
.. code-block:: bash
python -m pytest -k "not parallel"
You now have a verified developer installation of Syncopy. Please refert to our contributing guide <https://github.com/esi-neuroscience/syncopy/blob/master/CONTRIBUTING.md>
_ if you want to contribute to Syncopy.