This is a command line tool for converting 3D model assets on Autodesk's venerable FBX format to glTF 2.0, a modern runtime asset delivery format.
Precompiled binaries releases for Windows, Mac OS X and Linux may be found here.
Bleeding-edge binaries for Windows may be found here. Linux and Mac OS X to come; meanwhile, you can build your own.
The tool can be invoked like so:
> FBX2glTF ~/models/butterfly.fbx
Or perhaps, as part of a more complex pipeline:
> FBX2glTF --binary --draco --verbose \
--input ~/models/source/butterfly.fbx \
--output ~/models/target/butterfly.glb
There are also some friendly & hands-on instructions available over at Facebook.
You can always run the binary with --help to see what options it takes:
FBX2glTF 0.9.7: Generate a glTF 2.0 representation of an FBX model.
Usage: FBX2glTF [OPTIONS] [FBX Model]
Positionals:
FBX Model FILE The FBX model to convert.
Options:
-h,--help Print this help message and exit
-v,--verbose Include blend shape tangents, if reported present by the FBX SDK.
-V,--version
-i,--input FILE The FBX model to convert.
-o,--output TEXT Where to generate the output, without suffix.
-e,--embed Inline buffers as data:// URIs within generated non-binary glTF.
-b,--binary Output a single binary format .glb file.
--long-indices (never|auto|always)
Whether to use 32-bit indices.
--compute-normals (never|broken|missing|always)
When to compute vertex normals from mesh geometry.
--anim-framerate (bake24|bake30|bake60)
Select baked animation framerate.
--flip-u Flip all U texture coordinates.
--no-flip-u Don't flip U texture coordinates.
--flip-v Flip all V texture coordinates.
--no-flip-v Don't flip V texture coordinates.
--no-khr-lights-punctual Don't use KHR_lights_punctual extension to export FBX lights.
--user-properties Transcribe FBX User Properties into glTF node and material 'extras'.
--blend-shape-normals Include blend shape normals, if reported present by the FBX SDK.
--blend-shape-tangents Include blend shape tangents, if reported present by the FBX SDK.
-k,--keep-attribute (position|normal|tangent|binormial|color|uv0|uv1|auto) ...
Used repeatedly to build a limiting set of vertex attributes to keep.
--fbx-temp-dir DIR Temporary directory to be used by FBX SDK.
Materials:
--pbr-metallic-roughness Try to glean glTF 2.0 native PBR attributes from the FBX.
--khr-materials-unlit Use KHR_materials_unlit extension to request an unlit shader.
Draco:
-d,--draco Apply Draco mesh compression to geometries.
--draco-compression-level INT in [0 - 10]=7
The compression level to tune Draco to.
--draco-bits-for-position INT in [1 - 32]=14
How many bits to quantize position to.
--draco-bits-for-uv INT in [1 - 32]=10
How many bits to quantize UV coordinates to.
--draco-bits-for-normals INT in [1 - 32]=10
How many bits to quantize nornals to.
--draco-bits-for-colors INT in [1 - 32]=8
How many bits to quantize colors to.
--draco-bits-for-other INT in [1 - 32]=8
How many bits to quantize all other vertex attributes to.
Some of these switches are not obvious:
--embed
is the way to get a single distributable file without using the
binary format. It encodes the binary buffer(s) as a single base64-encoded
data://
URI. This is a very slow and space-consuming way to accomplish what
the binary format was invented to do simply and efficiently, but it can be
useful e.g. for loaders that don't understand the .glb format.--flip-u
and --flip-v
, when enabled, will apply a x -> (1.0 - x)
function to all u
or v
texture coordinates respectively. The u
version
is perhaps not commonly used, but flipping v
is the default behaviour.
Your FBX is likely constructed with the assumption that (0, 0)
is bottom
left, whereas glTF has (0, 0)
as top left. To produce spec-compliant glTF,
we must flip the texcoords. To request unflipped coordinates:--long-indices
lets you force the use of either 16-bit or 32-bit indices.
The default option is auto, which make the choice on a per-mesh-size basis.--compute-normals
controls when automatic vertex normals should be computed
from the mesh. By default, empty normals (which are forbidden by glTF) are
replaced. A choice of 'missing' implies 'broken', but additionally creates
normals for models that lack them completely.--no-flip-v
will actively disable v coordinat flipping. This can be useful
if your textures are pre-flipped, or if for some other reason you were already
in a glTF-centric texture coordinate system.--pbr-metallic-roughness
switch is at least compliant with the core spec;
unlike the others, it does not depend on an unratified extension. That option
will be chosen by default if you supply none of the others. Material switches
are documented further below.-keep-attribute
option, you enable a mode wherein you must
supply it repeatedly to list all the vertex attributes you wish to keep in
the conversion process. This is a way to trim the size of the resulting glTF
if you know the FBX contains superfluous attributes. The supported arguments
are position
, normal
, tangent
, color
, uv0
, and uv1
.--blend-shape-normals
and
--blend-shape-tangents
to include normal and tangent attributes in the glTF
morph targets. They are not included by default because they rarely or never
seem to be correctly present in the actual FBX source, which means the SDK
must be computing them from geometry, unasked? In any case, they are beyond
the control of the artist, and can yield strange crinkly behaviour. Since
they also take up significant space in the output file, we made them opt-in.We currently depend on the open source projects Draco, MathFu, Json, cppcodec, CLI11, stb, and fmt; all of which are automatically downloaded and/or built.
At present, only version 2019.2 of the FBX SDK is supported. The build system will not successfully locate any other version.
Your development environment will need to have:
Then, compilation on Unix machines will look something like:
# Determine SDK location & build settings for Linux vs (Recent) Mac OS X
> if [[ "$OSTYPE" == "darwin"* ]]; then
export CONAN_CONFIG="-s compiler=apple-clang -s compiler.version=10.0 -s compiler.libcxx=libc++"
export FBXSDK_TARBALL="https://github.com/zellski/FBXSDK-Darwin/archive/2019.2.tar.gz"
elif [[ "$OSTYPE" == "linux"* ]]; then
export CONAN_CONFIG="-s compiler.libcxx=libstdc++11"
export FBXSDK_TARBALL="https://github.com/zellski/FBXSDK-Linux/archive/2019.2.tar.gz"
else
echo "This snippet only handles Mac OS X and Linux."
fi
# Fetch Project
> git clone https://github.com/facebookincubator/FBX2glTF.git
> cd FBX2glTF
# Fetch and unpack FBX SDK
> curl -sL "${FBXSDK_TARBALL}" | tar xz --strip-components=1 --include */sdk/
# Then decompress the contents
> zstd -d -r --rm sdk
# Install and configure Conan, if needed
> pip3 install conan # or sometimes just "pip"; you may need to install Python/PIP
> conan remote add --force bincrafters https://api.bintray.com/conan/bincrafters/public-conan
# Initialize & run build
> conan install . -i build -s build_type=Release ${CONAN_CONFIG}
> conan build . -bf build
If all goes well, you will end up with a statically linked executable in ./build/FBX2glTF
.