FrankMocap pursues an easy-to-use single view 3D motion capture system developed by Facebook AI Research (FAIR). FrankMocap provides state-of-the-art 3D pose estimation outputs for body, hand, and body+hands in a single system. The core objective of FrankMocap is to democratize the 3D human pose estimation technology, enabling anyone (researchers, engineers, developers, artists, and others) can easily obtain 3D motion capture outputs from videos and images.
Btw, why the name FrankMocap? Our pipeline to integrate body and hand modules reminds us of Frankenstein's monster!
Body Motion Capture:
Hand Motion Capture
Egocentric Hand Motion Capture
Whole body Motion Capture (body + hands)
Run body motion capture
# using a machine with a monitor to show output on screen
python -m demo.demo_bodymocap --input_path ./sample_data/han_short.mp4 --out_dir ./mocap_output
# screenless mode (e.g., a remote server)
xvfb-run -a python -m demo.demo_bodymocap --input_path ./sample_data/han_short.mp4 --out_dir ./mocap_output
Run hand motion capture
# using a machine with a monitor to show outputs on screen
python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output
# screenless mode (e.g., a remote server)
xvfb-run -a python -m demo.demo_handmocap --input_path ./sample_data/han_hand_short.mp4 --out_dir ./mocap_output
Run whole body motion capture
# using a machine with a monitor to show outputs on screen
python -m demo.demo_frankmocap --input_path ./sample_data/han_short.mp4 --out_dir ./mocap_output
# screenless mode (e.g., a remote server)
xvfb-run -a python -m demo.demo_frankmocap --input_path ./sample_data/han_short.mp4 --out_dir ./mocap_output
Note:
@InProceedings{rong2021frankmocap,
title={FrankMocap: A Monocular 3D Whole-Body Pose Estimation System via Regression and Integration},
author={Rong, Yu and Shiratori, Takaaki and Joo, Hanbyul},
booktitle={IEEE International Conference on Computer Vision Workshops},
year={2021}
}
@article{joo2020eft, title={Exemplar Fine-Tuning for 3D Human Pose Fitting Towards In-the-Wild 3D Human Pose Estimation}, author={Joo, Hanbyul and Neverova, Natalia and Vedaldi, Andrea}, journal={3DV}, year={2021} }
- FrankMocap leverages many amazing open-sources shared in research community.
- [SMPL](https://smpl.is.tue.mpg.de/), [SMPLX](https://smpl-x.is.tue.mpg.de/)
- [Detectron2](https://github.com/facebookresearch/detectron2)
- [Pytorch3D](https://pytorch3d.org/) (for rendering)
- [OpenDR](https://github.com/mattloper/opendr/wiki) (for rendering)
- [SPIN](https://github.com/nkolot/SPIN) (for body module)
- [100DOH](https://fouheylab.eecs.umich.edu/~dandans/projects/100DOH/) (for hand detection)
- [lightweight-human-pose-estimation](https://github.com/Daniil-Osokin/lightweight-human-pose-estimation.pytorch) (for body detection)