.. image:: https://badge.fury.io/py/susi.svg :target: https://pypi.org/project/susi/ :alt: PyPi - Code Version
.. image:: https://img.shields.io/pypi/pyversions/susi.svg :target: https://pypi.org/project/susi/ :alt: PyPI - Python Version
.. image:: https://readthedocs.org/projects/susi/badge/?version=latest :target: https://susi.readthedocs.io/en/latest/?badge=latest :alt: Documentation Status
.. image:: https://codecov.io/gh/felixriese/susi/branch/master/graph/badge.svg :target: https://codecov.io/gh/felixriese/susi :alt: Codecov
.. image:: https://api.codacy.com/project/badge/Grade/d304689a7364437db1ef998cf7765f5a :target: https://app.codacy.com/app/felixriese/susi :alt: Codacy Badge
.. image:: https://anaconda.org/conda-forge/susi/badges/version.svg :target: https://anaconda.org/conda-forge/susi :alt: Conda-forge
|
.. image:: https://raw.githubusercontent.com/felixriese/susi/master/docs/_static/susi_logo_small.png :target: https://github.com/felixriese/susi :align: right :alt: SuSi logo
Python package for unsupervised, supervised and semi-supervised self-organizing maps (SOM)
We present the SuSi package for Python. It includes a fully functional SOM for unsupervised, supervised and semi-supervised tasks:
:License:
3-Clause BSD license <LICENSE>
_
:Author:
Felix M. Riese <mailto:github@felixriese.de>
_
:Citation:
see Citation
and in the bibtex <https://github.com/felixriese/susi/blob/main/bibliography.bib>
file
:Documentation:
Documentation <https://susi.readthedocs.io/en/latest/index.html>
_
:Installation:
Installation guidelines <https://susi.readthedocs.io/en/latest/install.html>
_
:Paper:
F. M. Riese, S. Keller and S. Hinz in Remote Sensing, 2020 <https://www.mdpi.com/2072-4292/12/1/7>
_
Pip
.. code:: bash
pip3 install susi
.. image:: https://static.pepy.tech/personalized-badge/susi?period=total&units=international_system&left_color=black&right_color=blue&left_text=Downloads
:target: https://pepy.tech/project/susi
:alt: PyPi Downloads
Conda
.. code:: bash
conda install -c conda-forge susi
More information can be found in the installation guidelines <https://susi.readthedocs.io/en/latest/install.html>
_.
.. image:: https://img.shields.io/conda/dn/conda-forge/susi.svg :target: https://anaconda.org/conda-forge/susi :alt: Conda-Forge Downloads
A collection of code examples can be found in the documentation <https://susi.readthedocs.io/en/latest/examples.html>
_.
Code examples as Jupyter Notebooks can be found here:
examples/SOMClustering <https://github.com/felixriese/susi/blob/main/examples/SOMClustering.ipynb>
_examples/SOMRegressor <https://github.com/felixriese/susi/blob/main/examples/SOMRegressor.ipynb>
_examples/SOMRegressor_semisupervised <https://github.com/felixriese/susi/blob/main/examples/SOMRegressor_semisupervised.ipynb>
_examples/SOMRegressor_multioutput <https://github.com/felixriese/susi/blob/main/examples/SOMRegressor_multioutput.ipynb>
_examples/SOMClassifier <https://github.com/felixriese/susi/blob/main/examples/SOMClassifier.ipynb>
_examples/SOMClassifier_semisupervised <https://github.com/felixriese/susi/blob/main/examples/SOMClassifier_semisupervised.ipynb>
_documentation/hyperparameters <https://susi.readthedocs.io/en/latest/hyperparameters.html>
_.scikit-learn.model_selection.GridSearchCV <https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html>
_,
since the SuSi package is developed according to several scikit-learn
guidelines.The bibtex file including both references is available in bibliography.bib <https://github.com/felixriese/susi/blob/main/bibliography.bib>
_.
Paper:
F. M. Riese, S. Keller and S. Hinz, "Supervised and Semi-Supervised Self-Organizing
Maps for Regression and Classification Focusing on Hyperspectral Data",
Remote Sensing, vol. 12, no. 1, 2020. DOI:10.3390/rs12010007 <https://doi.org/10.3390/rs12010007>
_
.. code:: bibtex
@article{riese2020supervised,
author = {Riese, Felix~M. and Keller, Sina and Hinz, Stefan},
title = {{Supervised and Semi-Supervised Self-Organizing Maps for
Regression and Classification Focusing on Hyperspectral Data}},
journal = {Remote Sensing},
year = {2020},
volume = {12},
number = {1},
article-number = {7},
URL = {https://www.mdpi.com/2072-4292/12/1/7},
ISSN = {2072-4292},
DOI = {10.3390/rs12010007}
}
Code:
Felix M. Riese, "SuSi: SUpervised Self-organIzing maps in Python",
Zenodo, 2019. DOI:10.5281/zenodo.2609130 <https://doi.org/10.5281/zenodo.2609130>
_
.. image:: https://zenodo.org/badge/DOI/10.5281/zenodo.2609130.svg :target: https://doi.org/10.5281/zenodo.2609130
.. code:: bibtex
@misc{riese2019susicode,
author = {Riese, Felix~M.},
title = {{SuSi: Supervised Self-Organizing Maps in Python}},
year = {2019},
DOI = {10.5281/zenodo.2609130},
publisher = {Zenodo},
howpublished = {\href{https://doi.org/10.5281/zenodo.2609130}{doi.org/10.5281/zenodo.2609130}}
}
This project is published under the 3-Clause BSD <LICENSE>
_ license.
.. image:: https://img.shields.io/pypi/l/susi.svg :target: https://github.com/felixriese/susi/blob/main/LICENSE :alt: PyPI - License