We are curating awesome research and approaches to CI in Sports!
This repository serves as a list of knowledge for researchers working in Computational Intelligence in Sports. The list mainly comprises methods based on evolutionary algorithms, artificial neural networks, fuzzy systems, and swarm intelligence algorithms[^1]. The research citations were done with Mendeley in the MLA 8th edition format. The list includes books, scientific literature, datasets, and software from Computational Intelligence in Sports.
[^1]: Several included research papers are only partially based on these methods but are essential, especially for interdisciplinary research.
Begg, Rezaul, and Marimuthu Palaniswami. βComputational Intelligence for Movement Sciences.β Computational Intelligence for Movement Sciences: Neural Networks and Other Emerging Techniques, edited by Rezaul Begg and Marimuthu Palaniswami, IGI Global, 2006, doi:10.4018/978-1-59140-836-9.
Fister, Iztok, et al. βComputational intelligence in sports.β Edited by Yew Lim, Meng-Hiot Soon Ong, vol. 22, Springer International Publishing, 2019, doi:10.1007/978-3-030-03490-0.
Beal, Ryan, et al. βArtificial intelligence for team sports: a survey.β The Knowledge Engineering Review, vol. 34, Cambridge University Press, 2019, doi:10.1017/S0269888919000225.
Bonidia, Robson P., et al. βData Mining in Sports: A Systematic Review.β IEEE Latin America Transactions, vol. 16, no. 1, IEEE Computer Society, Jan. 2018, pp. 232β39, doi:10.1109/TLA.2018.8291478.
Bonidia, Robson P., et al. βComputational Intelligence in Sports: A Systematic Literature Review.β Advances in Human-Computer Interaction, vol. 2018, Hindawi Limited, Oct. 2018, pp. 1β13, doi:10.1155/2018/3426178.
Bunker, Rory, and Teo Susnjak. βThe Application of Machine Learning Techniques for Predicting Match Results in Team Sport: A Review.β Journal of Artificial Intelligence Research, vol. 73, AI Access Foundation, Apr. 2022, pp. 1285β322, doi:10.1613/JAIR.1.13509.
Cardenas Hernandez, Fernando Pedro, et al. βBeyond Hard Workout: A Multimodal Framework for Personalised Running Training with Immersive Technologies.β British Journal of Educational Technology, doi:10.1111/bjet.13445.
Farrokhi, Alireza, et al. βApplication of Internet of Things and Artificial Intelligence for Smart Fitness: A Survey.β Computer Networks, vol. 189, Elsevier, Apr. 2021, p. 107859, doi:10.1016/j.comnet.2021.107859.
Fister Jr, Iztok, et al. βComputational Intelligence in Sports: Challenges and Opportunities within a New Research Domain.β Applied Mathematics and Computation, vol. 262, Elsevier, July 2015, pp. 178β86, doi:10.1016/j.amc.2015.04.004.
Frangoudes, Fotos, et al. βAssessing Human Motion During Exercise Using Machine Learning: A Literature Review.β IEEE Access, vol. 10, 2022, pp. 86874β903, doi:10.1109/ACCESS.2022.3198935.
GΓ‘mez DΓaz, R.; Yu, Q.; Ding, Y.; Laamarti, F.; El Saddik, A. βDigital Twin Coaching for Physical Activities: A Survey.β Sensors 2020, 20, 5936, doi:10.3390/s20205936.
H. Pascual, X. M. Bruin, A. Alonso, J. Cerd`a, βA systematic review on human modeling: Digging into human digital twin implementations.β, arXiv preprint, doi:arXiv:2302.03593.
KrstiΔ, DuΕ‘an, et al. βThe Application and Impact of Artificial Intelligence on Sports Performance Improvement: A Systematic Literature Review.β 2023 4th International Conference on Communications, Information, Electronic and Energy Systems (CIEES), IEEE, 2023, pp. 1β8, doi:10.1109/CIEES58940.2023.10378750.
Lai, Daniel T. H., et al. βComputational Intelligence in Gait Research: A Perspective on Current Applications and Future Challenges.β IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 5, 2009, pp. 687β702, doi:10.1109/TITB.2009.2022913.
Lygouras, Dimosthenis, and Avgoustos Tsinakos. βThe Use of Immersive Technologies in Karate Training: A Scoping Review.β Multimodal Technologies and Interaction, vol. 8, no. 4, 2024, doi:10.3390/mti8040027.
Milasi, Sadegh Fatahi, et al. βUnlocking the Potential: A Comprehensive Meta-Synthesis of Internet of Things in the Sports Industry.β Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, vol., no., p. 17543371241229520, doi:10.1177/17543371241229521.
Nalbant, Kemal GΓΆkhan, and Sevgi AydΔ±n. βLiterature Review on the Relationship between Artificial Intelligence Technologies with Digital Sports Marketing and Sports Management.β Indonesian Journal of Sport Management, vol. 2, no. 2, Oct. 2022, pp. 135β43, doi:10.31949/ijsm.v2i2.2876.
RajΕ‘p, Alen, and Iztok Jr. Fister. βA Systematic Literature Review of Intelligent Data Analysis Methods for Smart Sport Training.β Applied Sciences, vol. 10, no. 9, Multidisciplinary Digital Publishing Institute, Apr. 2020, p. 3013, doi:10.3390/app10093013.
Song, Yu (Wolf). βHuman Digital Twin, the Development and Impact on Design.β Journal of Computing and Information Science in Engineering, vol. 23, no. 6, Dec. 2023, doi:10.1115/1.4063132.
Stessens, Loes, et al. βPhysical Performance Estimation in Practice: A Systematic Review of Advancements in Performance Prediction and Modeling in Cycling.β International Journal of Sports Science & Coaching, vol., no., p. 17479541241262384, doi:10.1177/17479541241262385.
Szot, Tomasz. βEvolution of Sport Wearable Global Navigation Satellite Systemsβ Receivers: A Look at the Garmin Forerunner Series.β Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology, doi:10.1177/17543371241237319.
Wakelam, Edward, et al. βThe Collection, Analysis and Exploitation of Footballer Attributes: A Systematic Review.β Journal of Sports Analytics, vol. 8, no. 1, IOS Press, Jan. 2022, pp. 31β67, doi:10.3233/JSA-200554.
Yang, Luyao, et al. βIntelligent Wearable Systems: Opportunities and Challenges in Health and Sports.β ACM Comput. Surv., vol. 56, no. 7, Association for Computing Machinery, Apr. 2024, doi:10.1145/3648469.
Adeyemo, Victor Elijah, et al. βIdentification of Pattern Mining Algorithm for Rugby League Players Positional Groups Separation Based on Movement Patterns.β ArXiv, Feb. 2023, p. 2023, http://arxiv.org/abs/2302.14058.
Ariyaratne, M. K. A., and R. M. Silva. βMeta-Heuristics Meet Sports: A Systematic Review from the Viewpoint of Nature Inspired Algorithms.β International Journal of Computer Science in Sport, vol. 21, no. 1, Mar. 2022, pp. 49β92, doi:10.2478/ijcss-2022-0003.
Attigala, D. A., et al. βIntelligent Trainer for Athletes Using Machine Learning.β 2019 International Conference on Computing, Power and Communication Technologies (GUCON), 2019, pp. 898β903.
Barshan, Billur, and M. C. Yuksek. βRecognizing Daily and Sports Activities in Two Open Source Machine Learning Environments Using Body-Worn Sensor Units.β The Computer Journal, vol. 57, no. 11, Oxford University Press, Nov. 2014, pp. 1649β67, doi:10.1093/comjnl/bxt075.
Boillet, Alice, Laurent A. Messonnier, and Caroline Cohen. "Individualized physiology-based digital twin model for sports performance prediction: a reinterpretation of the MargariaβMorton model." Scientific Reports 14, no. 1 (2024): 5470, doi:10.1038/s41598-024-56042-0.
Carey, David L., et al. βOptimizing Preseason Training Loads in Australian Football.β International Journal of Sports Physiology and Performance, vol. 13, no. 2, Human Kinetics, Feb. 2018, pp. 194β99, doi:10.1123/ijspp.2016-0695.
Chacoma, AndrΓ©s, and Orlando V Billoni. βSimple Mechanism Rules the Dynamics of Volleyball.β ArXiv, Feb. 2022, http://arxiv.org/abs/2202.13765.
Chen, Shuxi, et al. βDetecting Sports Fatigue from Speech by Support Vector Machine.β 2016 8th IEEE International Conference on Communication Software and Networks (ICCSN), IEEE, 2016, pp. 96β99, doi:10.1109/ICCSN.2016.7586626.
Cintia, Paolo, and Luca Pappalardo. βCoach2vec: Autoencoding the Playing Style of Soccer Coachesβ. Arxiv, June 2021, doi:10.48550/arxiv.2106.15444. Preprint.
Connor, Mark, et al. βOptimising Team Sport Training Plans with Grammatical Evolution.β 2019 IEEE Congress on Evolutionary Computation, CEC 2019 - Proceedings, Institute of Electrical and Electronics Engineers Inc., June 2019, pp. 2474β81, doi:10.1109/CEC.2019.8790369.
Connor, Mark, et al. βAdaptive Athlete Training Plan Generation: An Intelligent Control Systems Approach.β Journal of Science and Medicine in Sport, vol. 25, no. 4, Elsevier, Apr. 2022, pp. 351β55, doi:10.1016/j.jsams.2021.10.011.
De Prisco, Roberto, et al. βProviding Music Service in Ambient Intelligence: experiments with gym users.β Expert Systems with Applications, vol. 177, Pergamon, Sept. 2021, p. 114951, doi:10.1016/j.eswa.2021.114951.
Deng, Huijian, et al. βPrediction of Sports Aggression Behavior and Analysis of Sports Intervention Based on Swarm Intelligence Model.β Scientific Programming, vol. 2022, Hindawi Limited, 2022, doi:10.1155/2022/2479939.
DΓaz, Rogelio GΓ‘mez, Fedwa Laamarti, and Abdulmotaleb El Saddik. "DTCoach: your digital twin coach on the edge during COVID-19 and beyond." IEEE Instrumentation & Measurement Magazine 24, no. 6 (2021): 22-28, doi:10.1109/MIM.2021.9513635.
Ding, Xianqiong, et al. βSports Training Model Based on GA Optimized Neural Network.β Proceedings - 2020 13th International Conference on Intelligent Computation Technology and Automation, ICICTA 2020, Institute of Electrical and Electronics Engineers Inc., Oct. 2020, pp. 227β30, doi:10.1109/ICICTA51737.2020.00055.
Eriksson, Rikard, et al. βGenerating Weekly Training Plans in the Style of a Professional Swimming Coach Using Genetic Algorithms and Random Trees.β Proceedings of the 9th International Performance Analysis Workshop and Conference & 5th IACSS Conference, edited by Arnold Baca et al., Springer, Cham, 2022, pp. 61β68, doi:10.1007/978-3-030-99333-7_9.
Farrokhi, Alireza, et al. βA Decision Tree-Based Smart Fitness Framework in IoT.β SN Computer Science, vol. 3, no. 1, Springer, Jan. 2022, p. 2, doi:10.1007/s42979-021-00940-x.
Feely, Ciara, et al. βA Case-Based Reasoning Approach to Predicting and Explaining Running Related Injuries.β Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12877 LNAI, Springer, Cham, 2021, pp. 79β93, doi:10.1007/978-3-030-86957-1_6.
Feely, Ciara, et al. βModelling the Training Practices of Recreational Marathon Runners to Make Personalised Training Recommendations.β Proceedings of the 31st ACM Conference on User Modeling, Adaptation and Personalization, ACM, 2023, pp. 183β93, doi:10.1145/3565472.3592952.
Ferencsik, Dorina K., and Erika B. Varga. βCycling Activity Dataset Creation and Application for Feedback Giving.β Acta Marisiensis. Seria Technologica, vol. 18, no. 2, Walter de Gruyter GmbH, Dec. 2021, pp. 29β35, doi:10.2478/AMSET-2021-0015.
Fialho, Gabriel, et al. βPredicting Sports Results with Artificial Intelligence β A Proposal Framework for Soccer Games.β Procedia Computer Science, vol. 164, Elsevier, Jan. 2019, pp. 131β36, doi:10.1016/j.procs.2019.12.164.
Fidelis, J. Vijay, and E. Karthikeyan. βPlayer Management in Soccer Using Particle Swarm Optimization.β 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques, ICEECCOT 2019, Institute of Electrical and Electronics Engineers Inc., Dec. 2019, pp. 303β08, doi:10.1109/ICEECCOT46775.2019.9114599.
Fister, DuΕ‘an, et al. βVisualization of cycling training.β Proceedings of the StuCoSReC: 3rd Student Computer Science Research Conference, Koper, Slovenia. 2016.
Fister, Iztok, et al. βFramework for Planning the Training Sessions in Triathlon.β Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, 2018, pp. 1829β34, doi:10.1145/3205651.3208242.
Fister, Iztok, et al. βPlanning the Sports Training Sessions with the Bat Algorithm.β Neurocomputing, vol. 149, no. PB, Elsevier, Feb. 2015, pp. 993β1002, doi:10.1016/J.NEUCOM.2014.07.034.
Fister, Iztok, et al. βSynthetic Data Augmentation of Cycling Sport Training Datasets.β Lecture Notes in Networks and Systems, vol. 371, Springer Science and Business Media Deutschland GmbH, 2022, pp. 65β74, doi:10.1007/978-3-030-93247-3_7.
Fister Jr., Iztok. βThe Relevance of Nature-Inspired Metaheuristic Algorithms in Smart Sport Training.β International Conference on Emerging Applications and Technologies for Industry 4.0 (EATI'2020), edited by Jemal H Abawajy et al., Springer International Publishing, 2021, pp. 1β8, doi:10.1007/978-3-030-80216-5_1.
Fister Jr., Iztok., et al. βAdaptation of Sport Training Plans by Swarm Intelligence.β Recent Advances in Soft Computing, edited by Radek MatouΕ‘ek, Springer International Publishing, 2019, pp. 56β67, doi:10.1007/978-3-319-97888-8_5.
Fister Jr, Iztok, et al. βNew Perspectives in the Development of the Artificial Sport Trainer.β Applied Sciences, vol. 11, no. 23, Multidisciplinary Digital Publishing Institute, Dec. 2021, p. 11452, doi:10.3390/app112311452.
Fister Jr, Iztok , et al. βSportyDataGen: An Online Generator of Endurance Sports Activity Collections.β Proceedings of the Central European Conference on Information and Intelligent Systems, Faculty of Organization and Informatics, University of Zagreb, 2018, pp. 171β78.
Fister Jr, Iztok, et al. βThe Importance of Monitoring and Maintaining Data in Sports Training Process.β Proceedings of the 8th Conference for Youth Sport, 2016.
Fister Jr, Iztok, et al. βTopology-Based Generation of Sport Training Sessions.β Journal of Ambient Intelligence and Humanized Computing, vol. 12, no. 1, Springer Science and Business Media Deutschland GmbH, Jan. 2021, pp. 667β78, doi:10.1007/s12652-020-02048-1.
Fister Jr, Iztok, et al. βOn Deploying the Artificial Sport Trainer into Practice.β 2021 8th International Conference on Soft Computing and Machine Intelligence, ISCMI 2021, Institute of Electrical and Electronics Engineers Inc., Sept. 2021, pp. 21β26, doi:ISCMI53840.2021.9654817.
Fister Jr, Iztok, and Iztok Fister. βGenerating the Training Plans Based on Existing Sports Activities Using Swarm Intelligence.β Modeling and Optimization in Science and Technologies, vol. 10, Springer, Cham, 2017, pp. 79β94, doi:10.1007/978-3-319-50920-4_4.
Fister Jr, Iztok, et al. βPopulation-Based Metaheuristics for Planning Interval Training Sessions in Mountain Biking.β Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11655 LNCS, Springer, Cham, 2019, pp. 70β79, doi:10.1007/978-3-030-26369-0_7.
Fister Jr, Iztok, et al. βDiscovering Dependencies among Mined Association Rules with Population-Based Metaheuristics.β Proceedings of the Genetic and Evolutionary Computation Conference Companion, ACM, 2019, pp. 1668β74, doi:10.1145/3319619.3326833.
Frevel, Nicolas, et al. βThe Impact of Technology on Sports β A Prospective Study.β Technological Forecasting and Social Change, vol. 182, Sept. 2022, p. 121838. ScienceDirect, doi:10.1016/j.techfore.2022.121838.
Hrovat, Goran, et al. βInterestingness Measure for Mining Sequential Patterns in Sports.β Journal of Intelligent \& Fuzzy Systems, vol. 29, no. 5, Jan. 2015, pp. 1981β94, doi:10.3233/IFS-151676.
He, Liqin, et al. βDecision Support System for Effective Action Recognition of Track and Field Sports Using Ant Colony Optimization.β Soft Computing, Mar. 2023, pp. 1β11, doi:10.1007/s00500-023-07967-7.
Kipp, Kristof, et al. βUse of Machine Learning to Model Volume Load Effects on Changes in Jump Performance.β International Journal of Sports Physiology and Performance, vol. 15, no. 2, Human Kinetics, Feb. 2020, pp. 285β87, doi:10.1123/IJSPP.2019-0009.
Kumyaito, Nattapon, et al. βPlanning a Sports Training Program Using Adaptive Particle Swarm Optimization with Emphasis on Physiological Constraints.β BMC Research Notes, vol. 11, no. 1, Dec. 2018, p. 9, doi:10.1186/s13104-017-3120-9.
Joshi, Ketan, et al. βRobust Sports Image Classification Using InceptionV3 and Neural Networks.β Procedia Computer Science, vol. 167, Elsevier, Jan. 2020, pp. 2374β81, doi:10.1016/j.procs.2020.03.290.
Langaroudi, Milad Keshtkar, and Mohammad Reza Yamaghani. βSports Result Prediction Based on Machine Learning and Computational Intelligence Approaches: A Survey.β Journal of Advances in Computer Engineering and Technology, vol. 5, no. 1, 2019, pp. 27β36.
Lee, Geon Ju, et al. βExploiting Weighted Association Rule Mining for Indicating Synergic Formation Tactics in Soccer Teams.β Concurrency and Computation: Practice and Experience, 2021, p. e6221, doi:10.1002/CPE.6221.
Li, Gang, and Tongzhou Zhao. βApproach of Intelligence Question-Answering System Based on Physical Fitness Knowledge Graph.β 2021 4th International Conference on Robotics, Control and Automation Engineering (RCAE), IEEE, 2021, pp. 191β95, doi:10.1109/RCAE53607.2021.9638824.
Liu, Yu, et al. βDesign and Implementation of Concurrent Optimization Schemes for Sports Health Prediction Platform.β 2018 7th International Conference on Digital Home (ICDH), IEEE, 2018, pp. 208β12, doi:10.1109/ICDH.2018.00044.
Lopez-Gomez, Julio Alberto, et al. βA Feature-Weighting Approach Using Metaheuristic Algorithms to Evaluate the Performance of Handball Goalkeepers.β IEEE Access, 2022, pp. 1β1, doi:10.1109/ACCESS.2022.3156120.
LΓ³pez-Serrano, Carlos, et al. βContextualizing Evaluation of Performance in Volleyball: Introducing Contextual Individual Contribution Coefficients to Assess Technical Actions.β Perceptual and Motor Skills, vol. 130, no. 6, Dec. 2023, pp. 2663β84, doi:10.1177/00315125231212592.
Lukac, Luka, et al. βA Minimalistic Toolbox for Extracting Features from Sport Activity Files.β 2021 IEEE 25th International Conference on Intelligent Engineering Systems (INES), IEEE, 2021, pp. 000121β26, doi:10.1109/INES52918.2021.9512927.
LukaΔ, Luka, et al. βDigital Twin in Sport: From an Idea to Realization.β Applied Sciences, vol. 12, no. 24, Dec. 2022, p. 12741, doi:10.3390/app122412741.
Masagca, Ramon Carlo. βThe AI Coach: A 5-Week AI-Generated Calisthenics Training Program on Health-Related Physical Fitness Components of Untrained Collegiate Students.β Journal of Human Sport and Exercise , vol. 20, no. 1, 2024, pp. 39β56, doi:10.55860/13v7e679.
Matabuena, Marcos, and Rosana RodrΓguez-LΓ³pez. βAn Improved Version of the Classical Banister Model to Predict Changes in Physical Condition.β Bulletin of Mathematical Biology, vol. 81, no. 6, Springer New York LLC, June 2019, pp. 1867β84, doi:10.1007/S11538-019-00588-Y.
Moutaouakil, Karim El, et al. βQuadratic Programming and Triangular Numbers Ranking to an Optimal Moroccan Diet with Minimal Glycemic Load.β Statistics, Optimization & Information Computing, vol. 11, no. 1, 1, Jan. 2023, pp. 85β94. iapress.org, doi:10.19139/soic-2310-5070-1541.
Mutijarsa, Kusprasapta, et al. βHeart Rate Prediction Based on Cycling Cadence Using Feedforward Neural Network.β 2016 International Conference on Computer, Control, Informatics and Its Applications (IC3INA), IEEE, 2016, pp. 72β76, doi:10.1109/IC3INA.2016.7863026.
Nikitina, Marina A. βDevelopment of a Personalized Diet Using Structural Optimization.β Society 5.0: Cyber-Solutions for Human-Centric Technologies, edited by Alla G. Kravets et al., Springer Nature Switzerland, 2023, pp. 43β52. doi:https://doi.org/10.1007/978-3-031-35875-3_4.
Novatchkov, Hristo, and Arnold Baca. βArtificial Intelligence in Sports on the Example of Weight Training.β Journal of Sports Science & Medicine, vol. 12, no. 1, Dept. of Sports Medicine, Medical Faculty of Uludag University, Mar. 2013, pp. 27β37, pmid:24149722.
Novatchkov, Hristo, and Arnold Baca. βFuzzy Logic in Sports: A Review and an Illustrative Case Study in the Field of Strength Training.β International Journal of Computer Applications, vol. 71, no. 6, 2013, pp. 8β14.
Ofoghi, Bahadorreza, et al. βModelling and Analysing Track Cycling Omnium Performances Using Statistical and Machine Learning Techniques.β Journal of Sports Sciences, vol. 31, no. 9, Routledge, May 2013, pp. 954β62, doi:10.1080/02640414.2012.757344.
Pappalardo, Luca, et al. βPlayeRank: Data-Driven Performance Evaluation and Player Ranking in Soccer via a Machine Learning Approach.β ACM Transactions on Intelligent Systems and Technology, vol. 10, no. 5, ACM PUB27 New York, NY, USA, Sept. 2019, pp. 1β27, doi:10.1145/3343172.
Podgorelec, Vili, et al. βClassification of Similar Sports Images Using Convolutional Neural Network with Hyper-Parameter Optimization.β Applied Sciences, vol. 10, no. 23, Multidisciplinary Digital Publishing Institute, Nov. 2020, p. 8494, doi:10.3390/app10238494.
Rajsp, Alen, and Iztok Jr Fister. βA Modified Evolutionary Algorithm for Generating the Cycling Training Routes.β IEEE Access, vol. 10, 2022, pp. 109743β59, doi:10.1109/ACCESS.2022.3214997.
RajΕ‘p, Alen, and Iztok Jr Fister. βDiscovering the Influence of Interruptions in Cycling Training: A Data Science Study.β Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 12745 LNCS, Springer, Cham, 2021, pp. 420β432, doi:10.1007/978-3-030-77970-2_32.
RajΕ‘p, Alen, et al. βPreprocessing of Roads in OpenStreetMap Based Geographic Data on a Property Graph.β Proceedings of the Central European Conference on Information and Intelligent Systems, Faculty of Organization and Informatics, University of Zagreb, 2921, pp. 193β199.
RajΕ‘p, Alen, Marjan HeriΔko, and Iztok Fister Jr. βThe use of Gamification in Smart Sport Training.βProceedings of the Central European Conference on Information and Intelligent Systems, Faculty of Organization and Informatics, University of Zagreb, pp. 113-120
Rauter, Samo. βNew Approach for Planning the Mountain Bike Training with Virtual Coach.β Trends in Sport Sciences, vol. 2, no. 25, 2018, pp. 69β74, doi:10.23829/TSS.2018.25.2-2.
RodrΓguez-Gallego, Laura, et al. βAssessment of Feedback Devices for Performance Monitoring in Master's Swimmers.β International Journal of Performance Analysis in Sport, vol. 22, no. 5, Sept. 2022, pp. 701β14, doi:10.1080/24748668.2023.2181556.
Sakabe, Hibiki, and Yohei Nakada. βComputational Method for Determining Optimal Dribbling Routes in Basketball.β 2022 IEEE Eighth International Conference on Multimedia Big Data (BigMM), 2022, pp. 107β08. IEEE Xplore, doi:10.1109/BigMM55396.2022.00024.
Sakabe, Hibiki, and Yohei Nakada. βEnhanced Method for Computing Optimal Dribbling Routes Using Tracking Data in Basketball.β 2023 IEEE Ninth Multimedia Big Data (BigMM), 2023, pp. 11β18, doi:10.1109/BigMM59094.2023.00009.
Schaefer, David, et al. βTraining Plan Evolution Based on Training Models.β 2015 International Symposium on Innovations in Intelligent SysTems and Applications (INISTA), IEEE, 2015, pp. 1β8, doi:10.1109/INISTA.2015.7276739.
Sen, Anik, et al. βSequence Recognition of Indoor Tennis Actions Using Transfer Learning and Long Short-Term Memory.β Frontiers of Computer Vision, 28th International Workshop, IW-FCV 2022, edited by Kazuhiko Sumi et al., Springer, Cham, 2022, pp. 312β24, doi:10.1007/978-3-031-06381-7_22.
Silacci, Alessandro, et al. βDesigning an E-Coach to Tailor Training Plans for Road Cyclists.β Advances in Intelligent Systems and Computing, vol. 1026, Springer, Cham, 2020, pp. 671β77, doi:10.1007/978-3-030-27928-8_102.
Silacci, Alessandro, et al. βTowards an AI-Based Tailored Training Planning for Road Cyclists: A Case Study.β Applied Sciences, vol. 11, no. 1, Multidisciplinary Digital Publishing Institute, Dec. 2020, p. 313, doi:10.3390/app11010313.
Smyth, Barry, et al. βRecommendations for Marathon Runners: On the Application of Recommender Systems and Machine Learning to Support Recreational Marathon Runners.β User Modeling and User-Adapted Interaction, Springer, Aug. 2021, pp. 1β52, doi:10.1007/s11257-021-09299-3.
StΓΆckl, Michael, and Stuart Morgan. βVisualization and Analysis of Spatial Characteristics of Attacks in Field Hockey.β International Journal of Performance Analysis in Sport, vol. 13, no. 1, Apr. 2013, pp. 160β78, doi:10.1080/24748668.2013.11868639.
Teikari, Petteri, and Aleksandra Pietrusz. βPrecision Strength Training: Data-Driven Artificial Intelligence Approach to Strength and Conditioning.β SportRxiv, 2021, doi:10.31236/OSF.IO/W734A. Preprint.
Thorsen, Ola, et al. βCan Machine Learning Help Reveal the Competitive Advantage of Elite Beach Volleyball Players?β Swedish Artificial Intelligence Society, 2024, pp. 57β66, doi:10.3384/ecp208007.
Van Bulck, David, et al. βResult-Based Talent Identification in Road Cycling: Discovering the next Eddy Merckx.β Annals of Operations Research, Springer, Oct. 2021, pp. 1β18, doi:10.1007/s10479-021-04280-0.
Wang, Zhen, et al. βQuantum Photonics Advancements Enhancing Health and Sports Performance.β Optical and Quantum Electronics, vol. 56, no. 3, Mar. 2024, pp. 1β12, doi:10.1007/s11082-023-05917-z.
Xiong, Shengyao, and Xinwei Li. βIntelligent Strategy of Internet of Things Computing in Badminton Sports Activities.β Wireless Communications and Mobile Computing, edited by Venkateswaran N, vol. 2022, Oct. 2022, pp. 1β9, doi:10.1155/2022/9409151.
Yashiro, Kotaro, and Yohei Nakada. βFast Implementation for Computational Method of Optimum Attacking Play in Rugby Sevens.β Modeling, Simulation and Optimization, edited by Biplab Das et al., Springer Nature, 2022, pp. 97β109. Springer Link, doi:10.1007/978-981-19-0836-1_8.
Zaib, Ali, and Muhammad Talal Ahmad. βResearch on Biomechanical Analysis of Football Player Using Information Technology in Sports Field.β Revista de PsicologΓa Del Deporte (Journal of Sport Psychology), vol. 31, no. 3, Oct. 2022, pp. 21β30.
Zhang, Juwei, et al. βThe Relationship between Measurement and Evaluation in Physical Education Teaching Based on Intelligent Analysis and Sensor Data Mining.β Journal of Intelligent & Fuzzy Systems, no. Preprint, IOS Press, pp. 1β16, doi:10.3233/JIFS-235410.
Zhang, Ying, et al. βResearch on Interactive Sports Game Experience in Physical Training System Based on Digital Entertainment Technology and Sensor Devices.β Entertainment Computing, 2024, p. 100866, doi:10.1016/j.entcom.2024.100866.
Zhang, Yuwang, and Yuan Zhang. βSports Training System Based on Convolutional Neural Networks and Data Mining.β Computational Intelligence and Neuroscience, vol. 2021, Hindawi Limited, 2021, doi:10.1155/2021/1331759.
Zhou, Haisheng, and Yang Li. βDesign of Intelligent Analysis System of Basketball Skilled Movement Based on Data Mining Technology.β 2023 IEEE 5th Eurasia Conference on IOT, Communication and Engineering (ECICE), IEEE, 2023, pp. 457β59, doi:10.1109/ECICE59523.2023.10383045.
Zhu, Dan, et al. βA Perspective on Rhythmic Gymnastics Performance Analysis Powered by Intelligent Fabric.β Advanced Fiber Materials, Oct. 2022, doi:10.1007/s42765-022-00197-w.
Znika, I., and A. Radovan. βPersonal Physical Fitness Modeling through Real-Time Predictive Models.β 2024 47th MIPRO ICT and Electronics Convention (MIPRO), 2024, pp. 157β62, doi:10.1109/MIPRO60963.2024.10569604.
GΓ‘mez DΓaz, Rogelio. "Digital Twin Coaching for Edge Computing Using Deep Learning Based 2D Pose Estimation." PhD diss., UniversitΓ© d'Ottawa/University of Ottawa, 2021, doi:10.20381/ruor-26229.
Laamarti, Fedwa. "Towards Standardized Digital Twins for Health, Sport, and Well-being." PhD diss., UniversitΓ© d'Ottawa/University of Ottawa, 2019, doi:10.20381/ruor-23746.
Murillo Burford, Esteban. βPredicting Cycling Performance Using Machine Learning.β Wake Forest University Graduate School of Arts and Sciences, 2020.
Eriksson, Rikard, and Johan Nicander. βAutomated Generation of Training Programs for Swimmers Generating Weekly Training Plans in the Style of a Professional Swimming Coach Using Genetic Algorithms and Random Trees.β Chalmers University of Technology, 2021, doi:20.500.12380/302927.
Fister Jr., et al. βA collection of sport activity datasets for data analysis and data mining 2017a.β Technical report 2017a, University of Maribor, 2017
Iztok Fister Jr., Samo Rauter, DuΕ‘an Fister, Iztok Fister. βA collection of sport activity datasets with an emphasis on powermeter data.β Technical report, University of Maribor, November 2017
RajΕ‘p, Alen, and Iztok Fister Jr. βNeo4j Graph Dataset of Cycling Paths in Slovenia.β Data in Brief, vol. 48, June 2023, p. 109251, doi:10.1016/j.dib.2023.109251.
Samo Rauter, Iztok Fister Jr., Iztok Fister. βA collection of sport activity files for data analysis and data mining 2016a.β Technical report 0101, University of Ljubljana and University of Maribor 2016a, 2016
Iztok Fister Jr., Samo Rauter, DuΕ‘an Fister, Iztok Fister. βA collection of sport activity datasets for data analysis and data mining 2016b.β Technical report 2016b, University of Maribor, 2016
Samo Rauter, Iztok Fister Jr., Iztok Fister. βA collection of sport activity files for data analysis and data mining.β Ver 12 05, University of Maribor, 2015
Rouissi, Mehdi, et al. βData concerning isometric lower limb strength of dominant versus not-dominant leg in young elite soccer players.β (2018).
Pappalardo, Luca, et al. βA public data set of spatio-temporal match events in soccer competitions.β Scientific data 6.1 (2019): 1-15.
Slimani, Maamer, Armin ParavliΔ, and Nicola Luigi Bragazzi. βData concerning the effect of plyometric training on jump performance in soccer players: A meta-analysis.β Data in brief 15 (2017): 324-334.
Fister Jr., I. (2023). firefly-cpp/awesome-computational-intelligence-in-sports: 1.0 (1.0). Zenodo. https://doi.org/10.5281/zenodo.10431418