fivetran / dbt_facebook_ads

Fivetran data models for Facebook Ads built using dbt.
https://fivetran.github.io/dbt_facebook_ads/
Apache License 2.0
27 stars 27 forks source link
dbt dbt-packages facebook-ads fivetran

Facebook Ads Transformation dbt Package (Docs)

What does this dbt package do?

The following table provides a detailed list of all tables materialized within this package by default.

TIP: See more details about these tables in the package's dbt docs site.

Table Description
facebook_ads__account_report Each record in this table represents the daily performance at the account level.
facebook_ads__campaign_report Each record in this table represents the daily performance of a campaign at the campaign/advertising_channel/advertising_channel_subtype level.
facebook_ads__ad_set_report Each record in this table represents the daily performance at the ad set level.
facebook_ads__ad_report Each record in this table represents the daily performance at the ad level.
facebook_ads__url_report Each record in this table represents the daily performance of URLs at the ad level.

How do I use the dbt package?

Step 1: Prerequisites

To use this dbt package, you must have the following:

Databricks Dispatch Configuration

If you are using a Databricks destination with this package you will need to add the below (or a variation of the below) dispatch configuration within your dbt_project.yml. This is required in order for the package to accurately search for macros within the dbt-labs/spark_utils then the dbt-labs/dbt_utils packages respectively.

dispatch:
  - macro_namespace: dbt_utils
    search_order: ['spark_utils', 'dbt_utils']

Step 2: Install the package

Include the following facebook_ads package version in your packages.yml file:

TIP: Check dbt Hub for the latest installation instructions or read the dbt docs for more information on installing packages.

packages:
- package: fivetran/facebook_ads
version: [">=0.7.0", "<0.8.0"] # we recommend using ranges to capture non-breaking changes automatically

Do NOT include the facebook_ads_source package in this file. The transformation package itself has a dependency on it and will install the source package as well.

Step 3: Define database and schema variables

By default, this package runs using your destination and the facebook_ads schema. If this is not where your Facebook Ads data is (for example, if your Facebook Ads schema is named facebook_ads_fivetran), add the following configuration to your root dbt_project.yml file:

vars:
    facebook_ads_database: your_destination_name
    facebook_ads_schema: your_schema_name 

(Optional) Step 4: Additional configurations

Union multiple connectors

If you have multiple facebook_ads connectors in Fivetran and would like to use this package on all of them simultaneously, we have provided functionality to do so. The package will union all of the data together and pass the unioned table into the transformations. You will be able to see which source it came from in the source_relation column of each model. To use this functionality, you will need to set either the facebook_ads_union_schemas OR facebook_ads_union_databases variables (cannot do both) in your root dbt_project.yml file:

vars:
    facebook_ads_union_schemas: ['facebook_ads_usa','facebook_ads_canada'] # use this if the data is in different schemas/datasets of the same database/project
    facebook_ads_union_databases: ['facebook_ads_usa','facebook_ads_canada'] # use this if the data is in different databases/projects but uses the same schema name

NOTE: The native source.yml connection set up in the package will not function when the union schema/database feature is utilized. Although the data will be correctly combined, you will not observe the sources linked to the package models in the Directed Acyclic Graph (DAG). This happens because the package includes only one defined source.yml.

To connect your multiple schema/database sources to the package models, follow the steps outlined in the Union Data Defined Sources Configuration section of the Fivetran Utils documentation for the union_data macro. This will ensure a proper configuration and correct visualization of connections in the DAG.

Passing Through Additional Metrics

By default, this package will select clicks, impressions, and cost from the source reporting tables to store into the staging models. If you would like to pass through additional metrics to the staging models, add the below configurations to your dbt_project.yml file. These variables allow for the pass-through fields to be aliased (alias) if desired, but not required. Use the below format for declaring the respective pass-through variables:

IMPORTANT: Make sure to exercise due diligence when adding metrics to these models. The metrics added by default (taps, impressions, and spend) have been vetted by the Fivetran team, maintaining this package for accuracy. There are metrics included within the source reports, such as metric averages, which may be inaccurately represented at the grain for reports created in this package. You must ensure that whichever metrics you pass through are appropriate to aggregate at the respective reporting levels in this package.

vars:
    facebook_ads__basic_ad_passthrough_metrics: 
      - name: "new_custom_field"
        alias: "custom_field"
      - name: "another_one"

Change the build schema

By default, this package builds the Facebook Ads staging models within a schema titled (<target_schema> + _facebook_ads_source) and your Facebook Ads modeling models within a schema titled (<target_schema> + _facebook_ads) in your destination. If this is not where you would like your Facebook Ads data to be written to, add the following configuration to your root dbt_project.yml file:

models:
    facebook_ads_source:
      +schema: my_new_schema_name # leave blank for just the target_schema
    facebook_ads:
      +schema: my_new_schema_name # leave blank for just the target_schema

Change the source table references

If an individual source table has a different name than the package expects, add the table name as it appears in your destination to the respective variable:

IMPORTANT: See this project's dbt_project.yml variable declarations to see the expected names.

vars:
    facebook_ads_<default_source_table_name>_identifier: your_table_name 

(Optional) Step 5: Orchestrate your models with Fivetran Transformations for dbt Core™

Expand for more details Fivetran offers the ability for you to orchestrate your dbt project through [Fivetran Transformations for dbt Core™](https://fivetran.com/docs/transformations/dbt). Learn how to set up your project for orchestration through Fivetran in our [Transformations for dbt Core setup guides](https://fivetran.com/docs/transformations/dbt#setupguide).

Does this package have dependencies?

This dbt package is dependent on the following dbt packages. These dependencies are installed by default within this package. For more information on the following packages, refer to the dbt hub site.

IMPORTANT: If you have any of these dependent packages in your own packages.yml file, we highly recommend that you remove them from your root packages.yml to avoid package version conflicts.

packages:
    - package: fivetran/facebook_ads_source
      version: [">=0.7.0", "<0.8.0"]

    - package: fivetran/fivetran_utils
      version: [">=0.4.0", "<0.5.0"]

    - package: dbt-labs/dbt_utils
      version: [">=1.0.0", "<2.0.0"]

    - package: dbt-labs/spark_utils
      version: [">=0.3.0", "<0.4.0"]

How is this package maintained and can I contribute?

Package Maintenance

The Fivetran team maintaining this package only maintains the latest version of the package. We highly recommend you stay consistent with the latest version of the package and refer to the CHANGELOG, DECISIONLOG and release notes for more information on changes across versions.

Contributions

A small team of analytics engineers at Fivetran develops these dbt packages. However, the packages are made better by community contributions.

We highly encourage and welcome contributions to this package. Check out this dbt Discourse article on the best workflow for contributing to a package.

Are there any resources available?