The is the project repository for GERNERMED, a named entity recognition (NER) model in the context of German medical natural language processing (NLP).
In particular, GERNERMED is the first open neural NER model for medical entities designed for German data.
Our follow-up work, GERNERMED++, is available here: http://github.com/frankkramer-lab/GERNERMED-pp
Published papers:\ See our short, software-related paper at: https://doi.org/10.1016/j.simpa.2021.100212 \ Or see our long paper at: https://doi.org/10.2196/39077
NER entities: The following entities are supported:
The evaluation scores on the test set are as follows:
NER Tag | Precision | Recall | F1-Score |
---|---|---|---|
Drug | 67.33 | 66.17 | 66.74 |
Strength | 92.34 | 90.99 | 91.66 |
Route | 89.93 | 90.14 | 90.04 |
Form | 91.94 | 89.24 | 90.57 |
Dosage | 87.83 | 87.57 | 87.70 |
Frequency | 79.14 | 76.92 | 78.01 |
Duration | 67.86 | 52.78 | 59.37 |
total | 82.31 | 80.79 | 81.54 |
For a quick test, run python3 example.py
to run the NER model pipeline.
The package NER pipeline is available in /data/de_GERNERMED-1.0.0.tar.gz
and can be installed by:
# From local fs
python3 -m pip install ./data/de_GERNERMED-1.0.0.tar.gz
# From GitHub
python3 -m pip install https://github.com/frankkramer-lab/GERNERMED/blob/main/data/de_GERNERMED-1.0.0.tar.gz?raw=true
The pipeline can be used in Python:
import spacy
nlp = spacy.load("de_GERNERMED")
doc = nlp("Dem Patienten wurde die Einnahme von Paracetamol (500 mg, zwei Tabletten täglich, 8 Wochen lang) zur Behandlung empfohlen.")
# Show entities
print(doc.ents)
The evaluation scores on the testset can be obtained by ./run_eval.sh
.
The custom German dataset is stored in /data/GERNERMED_dataset.json
.
Long-form JMIR Formative Research paper (https://doi.org/10.2196/39077):
@article{info:doi/10.2196/39077,
author="Frei, Johann and Kramer, Frank",
title="German Medical Named Entity Recognition Model and Data Set Creation Using Machine Translation and Word Alignment: Algorithm Development and Validation",
journal="JMIR Form Res",
year="2023",
month="Feb",
day="28",
volume="7",
pages="e39077",
keywords="natural language processing; named entity recognition; information extraction",
issn="2561-326X",
doi="10.2196/39077",
url="https://formative.jmir.org/2023/1/e39077",
url="https://doi.org/10.2196/39077",
url="http://www.ncbi.nlm.nih.gov/pubmed/36853741"
}
Short, software-focused paper at Software Impacts (https://doi.org/10.1016/j.simpa.2021.100212):
@article{frei_gernermed_2022,
title = {{GERNERMED}: An open German medical {NER} model},
volume = {11},
issn = {2665-9638},
url = {https://www.sciencedirect.com/science/article/pii/S2665963821000944},
doi = {10.1016/j.simpa.2021.100212},
pages = {100212},
journaltitle = {Software Impacts},
shortjournal = {Software Impacts},
author = {Frei, Johann and Kramer, Frank},
urldate = {2022-02-21},
date = {2022-02-01},
langid = {english},
keywords = {Machine learning, Natural language processing, Clinical text mining, Named entity recognition},
}
The ArXiv pre-print paper from http://arxiv.org/abs/2109.12104
@misc{frei2021gernermed,
title={GERNERMED -- An Open German Medical NER Model},
author={Johann Frei and Frank Kramer},
year={2021},
eprint={2109.12104},
archivePrefix={arXiv},
primaryClass={cs.CL}
}