fredhutchio / tfcb_2019

class materials for MCB517A through UW/Fred Hutch
10 stars 10 forks source link

MCB 517A: Tools for Computational Biology

This document is the syllabus for this course.

Class schedule

Time: 3:20PM-4:40PM, Tue & Thu, Sep 26 - Dec 5 2019

Location: B1-072, Fred Hutch

Lecture Date Instructor Topic
1 Sep 26 Kate Hertweck Introduction to course
2 Oct 1 Trevor Bedford Introduction to Git and GitHub
3 Oct 3 Trevor Bedford Introduction to data
4 Oct 8 Rasi Subramaniam Visualize data using R/ggplot2
5 Oct 10 Rasi Subramaniam Principles of data visualization
6 Oct 15 Rasi Subramaniam Working with data using R/tidyverse
7 Oct 17 Gavin Ha Introduction to sequencing data
8 Oct 22 Gavin Ha Genomic data in R
9 Oct 24 Erick Matsen Introduction to the command line
10 Oct 29 Phil Bradley Introduction to Python
11 Oct 31 Phil Bradley Intro to Python (continued)
12 Nov 5 Erick Matsen Intro to the command line (continued)
13 Nov 7 Jesse Bloom Data structures and biological analyses using Python
14 Nov 12 Jesse Bloom Data structures/biological analyses in Python (continued)
15 Nov 14 Phil Bradley Modeling and machine learning in Python
16 Nov 19 Phil Bradley Modeling/machine learning in Python (continued)
17 Nov 21 Erick Matsen Introduction to remote computing
18 Nov 26 Kate Hertweck Remote computing on the command line
19 Dec 3 Rasi Subramaniam Course summary and synthesis
20 Dec 5 Kate Hertweck Capstone project

Materials for each lecture will be available in this repository prior to the class session; the link for each topic will take you to the folder containing materials for that class.

For further assistance, Kate Hertweck and/or TA Katie Kistler will be available for to offer assistance just prior to (or after) the regular class session. Email Kate (khertwec at fredhutch.org) to schedule a time to meet, or to set up a separate appointment.

Homework and grading

Homework Assigned Date Due Date Topic
1 Oct 1 Oct 8 Reproducible science, Git and GitHub, Markdown
2 Oct 15 Oct 22 Data visualization and manipulation in R
3 Oct 22 Oct 29 Genomic data in R
4 Oct 24 Nov 7 Unix command line
5 Oct 29 Nov 7 Programming in Python
6 Nov 12 Nov 19 Data structures and biological analyses in Python
7 Nov 26 Dec 5 Modeling and machine learning in Python
8 Dec 3 Dec 10 Capstone

Course description

This course is designed to introduce computational research methods to graduate students in biomedical science and related disciplines. We expect students will have little to no previous experience in computational methods. This course provides a survey of the most common tools in the field and you should not expect that completion of the course will make you an expert in any single programming language. Rather, you should be equipped with foundational knowledge in reproducible computational science, and can continue learning relevant tools to suit your research interests.

Course objectives: By the end of the course, students should be able to:

Resources and required materials

Instructors

For general inquiries about this course, please contact khertwec at fredhutch.org