freewym / espresso

Espresso: A Fast End-to-End Neural Speech Recognition Toolkit
Other
942 stars 116 forks source link
asr end-to-end fairseq kaldi python pytorch speech-recognition

Espresso

Espresso is an open-source, modular, extensible end-to-end neural automatic speech recognition (ASR) toolkit based on the deep learning library PyTorch and the popular neural machine translation toolkit fairseq. Espresso supports distributed training across GPUs and computing nodes, and features various decoding approaches commonly employed in ASR, including look-ahead word-based language model fusion, for which a fast, parallelized decoder is implemented.

We provide state-of-the-art training recipes for the following speech datasets:

What's New:

Requirements and Installation

git clone https://github.com/freewym/espresso
cd espresso
pip install --editable .

# on MacOS:
# CFLAGS="-stdlib=libc++" pip install --editable ./
pip install kaldi_io sentencepiece soundfile
cd espresso/tools; make KALDI=<path/to/a/compiled/kaldi/directory>

add your Python path to PATH variable in examples/asr_<dataset>/path.sh, the current default is ~/anaconda3/bin.

kaldi_io is required for reading kaldi scp files. sentencepiece is required for subword pieces training/encoding. soundfile is required for reading raw waveform files. Kaldi is required for data preparation, feature extraction, scoring for some datasets (e.g., Switchboard), and decoding for all hybrid systems.

edit PYTHON_DIR variable in espresso/tools/Makefile (default: ~/anaconda3/bin), and then

cd espresso/tools; make openfst pychain
git clone https://github.com/NVIDIA/apex
cd apex
pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" \
  --global-option="--deprecated_fused_adam" --global-option="--xentropy" \
  --global-option="--fast_multihead_attn" ./

License

Espresso is MIT-licensed.

Citation

Please cite Espresso as:

@inproceedings{wang2019espresso,
  title = {Espresso: A Fast End-to-end Neural Speech Recognition Toolkit},
  author = {Yiming Wang and Tongfei Chen and Hainan Xu
            and Shuoyang Ding and Hang Lv and Yiwen Shao
            and Nanyun Peng and Lei Xie and Shinji Watanabe
            and Sanjeev Khudanpur},
  booktitle = {2019 IEEE Automatic Speech Recognition and Understanding Workshop (ASRU)},
  year = {2019},
}