fridiculous / django-estimators

a django app to persist and retrieve scikit learn machine learning models
MIT License
49 stars 14 forks source link
django machine-learning scikit-learn

.. image:: https://travis-ci.org/fridiculous/django-estimators.svg?branch=master :target: https://travis-ci.org/fridiculous/django-estimators

.. image:: https://coveralls.io/repos/github/fridiculous/django-estimators/badge.svg?branch=master :target: https://coveralls.io/github/fridiculous/django-estimators?branch=master

.. image:: https://landscape.io/github/fridiculous/django-estimators/master/landscape.svg?style=flat :target: https://landscape.io/github/fridiculous/django-estimators/master

Django-Estimators

Tidy Persistence and Retrieval for Machine Learning

Intro

Django-Estimators helps persist and track machine learning models (aka estimators) and datasets.

This library provides a series of proxy objects that wrap common python machine learning objects and dataset objects. This library versions, track progress and deploy models. It's highly extensible and can be used with most any python object (scikit-learn, numpy arrays, modules, methods).

This repo utilizes django as an ORM. If you'd like to work outside of django, try the sqlalchemy-based estimators <https://github.com/fridiculous/estimators.git>_ library instead.

Installation

Run: ::

pip install django-estimators

Quick start

  1. Add estimators to your INSTALLED_APPS. ::

    INSTALLED_APPS = [ ... 'estimators', ]

  2. Create the estimators table. ::

    python manage.py migrate

  3. Create a new model. Run python manage.py shell ::

    from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier()

    from estimators.models import Estimator est = Estimator(estimator=rfc) est.description = 'a simple forest' est.save()

  4. Retrieve your model using the django orm.

    est = Estimator.objects.last()

    now use your estimator

    est.estimator.predict(X)

Retrieving Models/Estimators

Use get_or_create to retrieve your model safely: ::

est = Estimator.objects.get_or_create(estimator=object)
# or potentially update it with update_or_create
est = Estimator.objects.update_or_create(estimator=object)

If you have the model:

est = Estimator.objects.filter(estimator=object).first()

Retrieve by unique hash: ::

est = Estimator.objects.filter(object_hash='d9c9f286391652b89978a6961b52b674').first()

Persisting and Retrieving DataSets

The DataSet class functions just like the Estimator class. If you have a numpy matrix or a pandas dataframe, wrap it with a DataSet object: ::

import numpy as np
import pandas as pd

df = pd.DataFrame(np.random.randint(0,10,(100,8)))

from estimators.models import DataSet

ds = DataSet(data=df)
ds.save()

Pull that same DataSet object with: ::

ds = DataSet.objects.latest('create_date')

If you already have the dataset: ::

ds = DataSet.objects.filter(data=df).first()

Persisting Predictions and Results

The most valuable part of a machine learning is the whole process. Using an Evaluator object, define the relationships between X_test, y_test and y_predicted ahead of time.

Then evaluate the evaluation plan, which in turn calls the predict method on the estimator and then presists all the wrapped objects.

::

from sklearn.datasets import load_digits
from sklearn.ensemble import RandomForestClassifier

digits = load_digits() # 1797 by 64
X = digits.data
y = digits.target

# simple splitting for validation testing
X_train, X_test = X[:1200], X[1200:]
y_train, y_test = y[:1200], y[1200:]

rfc = RandomForestClassifier()
rfc.fit(X_train, y_train)

Create the evaluation plan: ::

from estimators.models import Evaluator
plan = Evaluator(X_test=X_test, y_test=y_test, estimator=rfc)

result = plan.evaluate() # executes `predict` method on X_test

View all the atributes on the evaluation result: ::

result.estimator
result.X_test
result.y_test # optional, used with supervised classifiers
result.y_predicted

Using with Jupyter Notebook (or without a django app)

Django-Estimators can run as a standalone django app. In order to have access to the django db, set up the environment variable to load up your django project. In ipython, set the environment variable DJANGO_SETTINGS_MODULE to estimators.template_settings: ::

import os
import django
os.environ['DJANGO_SETTINGS_MODULE'] = "estimators.template_settings"
django.setup()

When creating a new database (by default db.sqlite3). Run this migration: ::

from django.core.management import call_command
call_command('migrate')

Continue as usual... ::

from estimators.models import Estimator

To use custom settings, copy estimators.template_settings and edit the fields. Like above, run os.environ['DJANGO_SETTINGS_MODULE'] = "custom_settings_file" before running django.setup().

Development Installation

To install the latest version of django-estimators, clone the repo, cd into the repo, and pip install with the current virtual environment.::

$ git clone git@github.com:fridiculous/django-estimators.git
$ cd django-estimators
$ <activate your project’s virtual environment>
(virtualenv) $ pip install -e .