fzi-forschungszentrum-informatik / Lanelet2

Map handling framework for automated driving
BSD 3-Clause "New" or "Revised" License
803 stars 328 forks source link

Lanelet2

CI CD Build Status ROS focal/noetic Build Status ROS2 focal/foxy Build Status ROS2 jammy/humble PyPI Downloads

Overview

Lanelet2 is a C++ library for handling map data in the context of automated driving. It is designed to utilize high-definition map data in order to efficiently handle the challenges posed to a vehicle in complex traffic scenarios. Flexibility and extensibility are some of the core principles to handle the upcoming challenges of future maps.

Features:

Lanelet2 is the successor of the old liblanelet that was developed in 2013. If you know Lanelet1, you might be interested in reading this.

Documentation

You can find more documentation in the individual packages and in doxygen comments. Here is an overview on the most important topics:

You can also find the documentation at this link.

Installation

Within ROS

Lanelet2 has been released for ROS. Just install ros-[distribution]-lanelet2, e.g.:

sudo apt install ros-noetic-lanelet2

Without ROS

Outside of ROS, Lanelet2 can be installed from PyPI. Note that currently only Python 3.8-3.11 linux builds are available and that Python 3.10+ is only supported for recent linux distributions such as Ubuntu 20.04+.

pip install lanelet2

Note:

If you receive the error

ERROR: Could not find a version that satisfies the requirement lanelet2 (from versions: none)
ERROR: No matching distribution found for lanelet2

during installation, even when using e.g. python 3.9 or 3.8 on a somewhat recent linux such as Ubuntu 18.04 or newer, your pip version is probably too old, as e.g. the pip version that comes with apt on Ubuntu 20.04 (20.0.2) is not recent enough for the provided package.

In this case you need to simply update pip with

pip3 install -U pip 

Using Docker

There is a Docker container from which you can test things out:

docker build -t lanelet2 .                    # builds a docker image named "lanelet2"
docker run -it --rm lanelet2:latest /bin/bash # starts the docker image
python -c "import lanelet2"                   # quick check to see everything is fine

The docker image contains a link to your local lanelet2, so you can work and see changes (almost) at the same time. Work with two screens, one local and one on docker. Make your code changes locally, then run again catkin build on docker to recompile the code (update python modules).

Manual installation

In case you want to build it in your own way (without the above Docker image) use these instructions.

Lanelet2 relies mainly on Catkin for building and is targeted towards Linux.

At least C++14 is required.

Dependencies

Besides Catkin, the dependencies are

For Ubuntu, the steps are the following:

On 16.04 and below, mrt_cmake_modules is not available in ROS and you have to clone it into your workspace (git clone https://github.com/KIT-MRT/mrt_cmake_modules.git).

Building

As usual with Catkin, after you have sourced the ros installation, you have to create a workspace and clone all required packages there. Then you can build.

source /opt/ros/$ROS_DISTRO/setup.bash
mkdir catkin_ws && cd catkin_ws && mkdir src
catkin init
catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo # build in release mode (or whatever you prefer)
cd src
git clone https://github.com/fzi-forschungszentrum-informatik/lanelet2.git
cd ..
catkin build

If unsure, see the Dockerfile or the travis build log. It shows the full installation process, with subsequent build and test based on a docker image with a clean Ubuntu installation.

Manual, experimental installation using conan

Note: Updated instructions for conan2! For non-catkin users, we also offer a conan based install process. Its experimental and might not work on all platforms, especially Windows. Since conan handles installing all C++ dependencies, all you need is a cloned repository, conan itself and a few python dependencies:

pip install conan catkin_pkg numpy
git clone https://github.com/fzi-forschungszentrum-informatik/lanelet2.git
cd lanelet2

From here, just use the default conan build/install procedure, e.g.:

conan create . --build=missing

Different from the conan defaults, we build lanelet2 and boost as shared libraries, because otherwise the lanelet2's plugin mechanisms as well as boost::python will fail. E.g. loading maps will not be possible and the python API will not be usable.

To be able to use the python bindings, you have to make conan export the PYTHONPATH for lanelet2 after conan create:

source activate.sh
python -c "import lanelet2" # or whatever you want to do
source deactivate.sh

Python3

The python bindings are build for your default python installation by default (which currently is python2 on most systems). To build for python3 instead of python2, create a python3 virtualenv before initializing the workspace with catkin init. The command python should point to python3.

After catkin init run catkin config --cmake-args -DCMAKE_BUILD_TYPE=RelWithDebInfo -DPYTHON_VERSION=3.6 to make sure that the correct python version is used. Then build and use as usual.

Note: With bionic and beyond, the apt package python3-catkin-tools conflicts with ROS melodic and should not be used. Use either the python2 version or use pip to install the python3 version.

Examples

Examples and common use cases in both C++ and Python can be found here.

Packages

Citation

If you are using Lanelet2 for scientific research, we would be pleased if you would cite our publication:

@inproceedings{poggenhans2018lanelet2,
  title     = {Lanelet2: A High-Definition Map Framework for the Future of Automated Driving},
  author    = {Poggenhans, Fabian and Pauls, Jan-Hendrik and Janosovits, Johannes and Orf, Stefan and Naumann, Maximilian and Kuhnt, Florian and Mayr, Matthias},
  booktitle = {Proc.\ IEEE Intell.\ Trans.\ Syst.\ Conf.},
  year      = {2018},
  address   = {Hawaii, USA},
  owner     = {poggenhans},
  month     = {November},
  Url={http://www.mrt.kit.edu/z/publ/download/2018/Poggenhans2018Lanelet2.pdf}
}