Gangwei Xu, Yun Wang, Junda Cheng, Jinhui Tang, Xin Yang
Fast-ACVNet.
A demo result on our RTX 3090 (Ubuntu 20.04).
conda create -n fast_acv python=3.8
conda activate fast_acv
conda install pytorch torchvision torchaudio cudatoolkit=11.3 -c pytorch -c nvidia
pip install opencv-python
pip install scikit-image
pip install tensorboard
pip install matplotlib
pip install tqdm
pip install timm==0.5.4
Download Scene Flow Datasets, KITTI 2012, KITTI 2015
Use the following command to train Fast-ACVNet+ or Fast-ACVNet on Scene Flow
Firstly, train attention weights generation network for 24 epochs,
python main_sceneflow.py --attention_weights_only True --logdir ./checkpoints/sceneflow/attention
Secondly, train complete network for another 24 epochs,
python main_sceneflow.py --loadckpt ./checkpoints/sceneflow/attention/checkpoint_000023.ckpt --logdir ./checkpoints/sceneflow/complete
Use the following command to train Fast-ACVNet+ or Fast-ACVNet on KITTI (using pretrained model on Scene Flow),
python main_kitti.py --loadckpt ./checkpoints/sceneflow/complete/checkpoint_000023.ckpt --logdir ./checkpoints/kitti
python save_disp.py
Method | Scene Flow (EPE) |
KITTI 2012 (3-all) |
KITTI 2015 (D1-all) |
Runtime (ms) |
---|---|---|---|---|
Fast-ACVNet+ | 0.59 | 1.85 % | 2.01 % | 45 |
HITNet | - | 1.89 % | 1.98 % | 54 |
CoEx | 0.69 | 1.93 % | 2.13 % | 33 |
BGNet+ | - | 2.03 % | 2.19 % | 35 |
AANet | 0.87 | 2.42 % | 2.55 % | 62 |
DeepPrunerFast | 0.97 | - | 2.59 % | 50 |
Our Fast-ACVNet+ achieves comparable accuracy with HITNet on KITTI 2012 and KITTI 2015
If you find this project helpful in your research, welcome to cite the paper.
@article{xu2023accurate,
title={Accurate and efficient stereo matching via attention concatenation volume},
author={Xu, Gangwei and Wang, Yun and Cheng, Junda and Tang, Jinhui and Yang, Xin},
journal={IEEE Transactions on Pattern Analysis and Machine Intelligence},
year={2023},
publisher={IEEE}
}
@inproceedings{xu2022attention,
title={Attention Concatenation Volume for Accurate and Efficient Stereo Matching},
author={Xu, Gangwei and Cheng, Junda and Guo, Peng and Yang, Xin},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12981--12990},
year={2022}
}
Thanks to Antyanta Bangunharcana for opening source of his excellent work Correlate-and-Excite. Thanks to Xiaoyang Guo for opening source of his excellent work GwcNet.