The Miami INterferometric SAR software (MinSAR) is an open-source python package for Interferometric Synthetic Aperture Radar processing and time series analysis written at the Geodesy Lab of the University of Miami at the Rosenstiel School of Marine and Atmospheric Science (RSMAS). MinSAR uses the following packages:
The main Developers are Sara Mirzaee and Falk Amelung with contributions of many University of Miami graduate and undergraduate students.
MinSAR downloads a stack of SLC images, downloads a DEM, processes the interferograms and creates displacement timeseries products using MintPy and/or MiaplPy. Optional steps are the ingestion into our [dataportal] (https//:insarmaps.miami.edu) and the upload of the data products to our jetstream server.
The processing is controlled by a *.template file which offers many different options for each processing step ([see example])(../samples/unittestGalapagosSenDT128.template). The processing is executed by minsarApp.bash
. The processing steps are specified on the command line. Steps:
download: downloading data (by executing the command in
dem: downloading DEM
jobfiles: create runfiles and jobfiles
ifgram: processing interferograms starting with unpacking of the images
mintpy: time series analysis based on smallbaseline method or single master interferograms (MintPy) (see Yunjun et al., 2019(
insarmaps: uploading displacement products to insarmaps website
miaplpy: time series analysis of persistent and distributed scatterers (see Mirzaee et al., 2023)
upload: upload data products to jetstream server
The entire workflow including insarmaps
is run by specifying the *template file (see note below for the unittestGalapagosSenDT128.template example):
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template # run with default and custom templates
minsarApp.bash -h / --help # help
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --mintpy --miaplpy
The default is to run the mintpy
step. The --mintpy --miaplpy
option runs both, MintPy and MiaplPy.
Processing can be started at a given step using the --start
option and stopped using --stop
option. The --dostep
option execute only one processing step. Examples:
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep download
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep dem
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep jobfiles
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep ifgram
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep mintpy
(minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep insarmaps # currently switched off because of disk space limitations)
(minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep upload # currently switched off)
minsarApp.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --dostep miaplpy
In order to use either --start
or --dostep
, it is necessary that the previous step was completed.
Update 9/2024: For burst download and ISCE processing with slc workflow use:
minsarApp.bash $SAMPLESDIR/bdunittestGalapagosSenDT128.template --burst-download --miaplpy --no-mintpy --insarmaps
download: minsrApp.bash
runs generate_download_command.py
and creates a ssara_federated_query.py
download command in ssara_command.txt
(which is excuted in the SLC
directory using bash ../ssara_command.txt
.
dem: dem_rsmas.py $SAMPLESDIR/unittestGalapagosSenDT128.template
: This script runs dem.py
from ISCE2 and uses the ssara*kml
file in the SLC
directory to determine the extent of the DEM.
jobfiles: create_runfiles.py $SAMPLESDIR/unittestGalapagosSenDT128.template
creates the run_files (using stackSentinel.py
of ISCE2). Then it creates SLURM jobfiles using job_submission.py
.
ifgram: run_workflow.bash $SAMPLESDIR/unittestGalapagosSenDT128.template --start 1
submits the `run_01 to run_09 jobfiles to SLURM.
mintpy: submits smallbaseline_wrapper.job
to SLURM.
miaplpy: submits miaplpyApp.py $SAMPLESDIR/unittestGalapagosSenDT128.template --dir miaplpy --jobfiles
to SLURM via the srun
command. Creates
insarmaps: submits insarmaps.job
to slurm, which runs ingest_insarmaps.py $SAMPLESDIR/unittestGalapagosSenDT128.template
to create run_insarmaps
containing the two commands required fro ingesting.
upload: runs upload_data_products.py $SAMPLESDIR/unittestGalapagosSenDT128.template
(options --mintpy, --miaplpy, --dir
) to upload the mintpy and/or miaplpy/network* directories to jetstream
The processing steps are recorded in the ./log
file in your project directory.
The generate_download_command.py
script generates the download command data based on the ssaraopt
parameters in the template file. It will create an --intersectsWith={Polygon ..)
string based on topsStack.boundingBox
.
ssaraopt.platform = None # platform name [SENTINEL-1A, ...]
ssaraopt.relativeOrbit = None # relative orbit number
ssaraopt.startDate = None # starting acquisition date [YYYYMMDD]
ssaraopt.endDate = None # ending acquisition date [YYYYMMDD]
topsStack.boundingBox = None # [ -1 0.15 -91.7 -90.9] lat_south lat_north lon_west lon_east
It also accepts the ssaraopt.frame
option but this did not work very well for us.
### 4.2. Download DEM: --dostep dem
Downaloading DEM from the USGS
* [Trouble shooting](./download_dem_troubleshooting.md)
### 4.3. Process interferograms: --dostep ifgrams
create_runfiles execute_run_files.py ....