./llama-cli --version
version: 4077 (af148c93)
built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
Operating systems
Mac
Which llama.cpp modules do you know to be affected?
Other (Please specify in the next section)
Problem description & steps to reproduce
The llama.cpp module is speculative
I was testing speedup of speculative decoding on my mac mini, with a draft model = llama-160m.Q8_0. I found the decoding speed increased when target model is in fp16, but decreased in Q4. I have included my test table and some logs below. Quantization models have much smaller model size and should be decoding faster. I don't understand if the quantization/dequantization overhead could be so large. I want to know if others have encountered similar problems and what could be the cause.
Target Model
Model Size
Base Speed (tok/s)
Speculative Speed (tok/s)
Speed Up
Llama-2-7b-chat-hf-f16
13G
17.3
26.8
+54.9%
Llama-2-7b-chat.Q4_K_M
3.8G
40.7
22.3
-45.2%
Cmd I run this this
./llama-speculative -m /Users/baihuajun/Documents/models/Llama-2-7b-chat-hf-f16.gguf -md /Users/baihuajun/Documents/models/llama-160m.Q8_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -e --temp -1 -n 64 --repeat-last-n 0 --repeat-penalty 1.0 --draft 5 -np 1
First Bad Commit
No response
Relevant log output
# This is for fp16 speculative
baihuajun@baihuajundeMac-mini bin % ./llama-speculative -m /Users/baihuajun/Documents/models/Llama-2-7b-chat-hf-f16.gguf -md /Users/baihuajun/Documents/models/llama-160m.Q8_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -e --temp -1 -n 64 --repeat-last-n 0 --repeat-penalty 1.0 --draft 5 -np 1
build: 4077 (af148c93) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
llama_load_model_from_file: using device Metal (Apple M4 Pro) - 16383 MiB free
llama_model_loader: loaded meta data with 22 key-value pairs and 291 tensors from /Users/baihuajun/Documents/models/Llama-2-7b-chat-hf-f16.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = LLaMA v2
llama_model_loader: - kv 2: llama.vocab_size u32 = 32000
llama_model_loader: - kv 3: llama.context_length u32 = 4096
llama_model_loader: - kv 4: llama.embedding_length u32 = 4096
llama_model_loader: - kv 5: llama.block_count u32 = 32
llama_model_loader: - kv 6: llama.feed_forward_length u32 = 11008
llama_model_loader: - kv 7: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 8: llama.attention.head_count u32 = 32
llama_model_loader: - kv 9: llama.attention.head_count_kv u32 = 32
llama_model_loader: - kv 10: llama.attention.layer_norm_rms_epsilon f32 = 0.000010
llama_model_loader: - kv 11: general.file_type u32 = 1
llama_model_loader: - kv 12: tokenizer.ggml.model str = llama
llama_model_loader: - kv 13: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 14: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 15: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 16: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 17: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 18: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 19: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 20: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 21: tokenizer.chat_template str = {% if messages[0]['role'] == 'system'...
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type f16: 226 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1684 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 4096
llm_load_print_meta: n_embd_v_gqa = 4096
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-05
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = F16
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 12.55 GiB (16.00 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOG token = 2 '</s>'
llm_load_print_meta: max token length = 48
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: Metal_Mapped model buffer size = 12603.02 MiB
llm_load_tensors: CPU_Mapped model buffer size = 250.00 MiB
...................................................................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 4096
llama_new_context_with_model: n_ctx_per_seq = 4096
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M4 Pro
ggml_metal_init: picking default device: Apple M4 Pro
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M4 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction = true
ggml_metal_init: simdgroup matrix mul. = true
ggml_metal_init: has bfloat = true
ggml_metal_init: use bfloat = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 17179.89 MB
llama_kv_cache_init: Metal KV buffer size = 2048.00 MiB
llama_new_context_with_model: KV self size = 2048.00 MiB, K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: Metal compute buffer size = 296.00 MiB
llama_new_context_with_model: CPU compute buffer size = 16.01 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_load_model_from_file: using device Metal (Apple M4 Pro) - 1181 MiB free
llama_model_loader: loaded meta data with 31 key-value pairs and 111 tensors from /Users/baihuajun/Documents/models/llama-160m.Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Llama 160m
llama_model_loader: - kv 3: general.organization str = JackFram
llama_model_loader: - kv 4: general.basename str = llama
llama_model_loader: - kv 5: general.size_label str = 160M
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.tags arr[str,1] = ["text-generation"]
llama_model_loader: - kv 8: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 9: general.datasets arr[str,1] = ["wikipedia"]
llama_model_loader: - kv 10: llama.block_count u32 = 12
llama_model_loader: - kv 11: llama.context_length u32 = 2048
llama_model_loader: - kv 12: llama.embedding_length u32 = 768
llama_model_loader: - kv 13: llama.feed_forward_length u32 = 3072
llama_model_loader: - kv 14: llama.attention.head_count u32 = 12
llama_model_loader: - kv 15: llama.attention.head_count_kv u32 = 12
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 17: general.file_type u32 = 7
llama_model_loader: - kv 18: llama.vocab_size u32 = 32000
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 64
llama_model_loader: - kv 20: tokenizer.ggml.model str = llama
llama_model_loader: - kv 21: tokenizer.ggml.pre str = default
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 23: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 27: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 28: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 29: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - type f32: 25 tensors
llama_model_loader: - type q8_0: 86 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1684 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 768
llm_load_print_meta: n_layer = 12
llm_load_print_meta: n_head = 12
llm_load_print_meta: n_head_kv = 12
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 768
llm_load_print_meta: n_embd_v_gqa = 768
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 3072
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 162.42 M
llm_load_print_meta: model size = 164.63 MiB (8.50 BPW)
llm_load_print_meta: general.name = Llama 160m
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOG token = 2 '</s>'
llm_load_print_meta: max token length = 48
llm_load_tensors: offloading 12 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 13/13 layers to GPU
llm_load_tensors: Metal_Mapped model buffer size = 164.64 MiB
llm_load_tensors: CPU_Mapped model buffer size = 24.90 MiB
.......................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 4096
llama_new_context_with_model: n_ctx_per_seq = 4096
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_pre_seq (4096) > n_ctx_train (2048) -- possible training context overflow
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M4 Pro
ggml_metal_init: picking default device: Apple M4 Pro
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M4 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction = true
ggml_metal_init: simdgroup matrix mul. = true
ggml_metal_init: has bfloat = true
ggml_metal_init: use bfloat = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 17179.89 MB
llama_kv_cache_init: Metal KV buffer size = 144.00 MiB
llama_new_context_with_model: KV self size = 144.00 MiB, K (f16): 72.00 MiB, V (f16): 72.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: Metal compute buffer size = 110.00 MiB
llama_new_context_with_model: CPU compute buffer size = 9.51 MiB
llama_new_context_with_model: graph nodes = 390
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
<s> Building a website can be done in 10 simple steps:
Step 1: Define Your Website's Purpose
Step 2: Choose a Domain Name
Step 3: Select a Web Host
Step 4: Plan Your Website's Structure
Step 5: Design Your Website
Step 6: Build Your Website
Step 7: Launch Your Website
Step 8: Opt
encoded 19 tokens in 0.186 seconds, speed: 102.365 t/s
decoded 69 tokens in 2.570 seconds, speed: 26.848 t/s
n_draft = 5
n_predict = 69
n_drafted = 120
n_accept = 44
accept = 36.667%
draft:
llama_perf_context_print: load time = 218.38 ms
llama_perf_context_print: prompt eval time = 2288.40 ms / 66 tokens ( 34.67 ms per token, 28.84 tokens per second)
llama_perf_context_print: eval time = 182.85 ms / 96 runs ( 1.90 ms per token, 525.02 tokens per second)
llama_perf_context_print: total time = 2757.47 ms / 162 tokens
target:
llama_perf_sampler_print: sampling time = 1.54 ms / 69 runs ( 0.02 ms per token, 44660.19 tokens per second)
llama_perf_context_print: load time = 6931.61 ms
llama_perf_context_print: prompt eval time = 2457.71 ms / 163 tokens ( 15.08 ms per token, 66.32 tokens per second)
llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_perf_context_print: total time = 2976.91 ms / 164 tokens
ggml_metal_free: deallocating
ggml_metal_free: deallocating
# This is for Q4 speculative
baihuajun@baihuajundeMac-mini bin % ./llama-speculative -m /Users/baihuajun/Documents/models/llama-2-7b-chat.Q4_K_M.gguf -md /Users/baihuajun/Documents/models/llama-160m.Q8_0.gguf -p "Building a website can be done in 10 simple steps:\nStep 1:" -e --temp -1 -n 64 --repeat-last-n 0 --repeat-penalty 1.0 --draft 5 -np 1
build: 4077 (af148c93) with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
llama_load_model_from_file: using device Metal (Apple M4 Pro) - 16383 MiB free
llama_model_loader: loaded meta data with 19 key-value pairs and 291 tensors from /Users/baihuajun/Documents/models/llama-2-7b-chat.Q4_K_M.gguf (version GGUF V2)
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.name str = LLaMA v2
llama_model_loader: - kv 2: llama.context_length u32 = 4096
llama_model_loader: - kv 3: llama.embedding_length u32 = 4096
llama_model_loader: - kv 4: llama.block_count u32 = 32
llama_model_loader: - kv 5: llama.feed_forward_length u32 = 11008
llama_model_loader: - kv 6: llama.rope.dimension_count u32 = 128
llama_model_loader: - kv 7: llama.attention.head_count u32 = 32
llama_model_loader: - kv 8: llama.attention.head_count_kv u32 = 32
llama_model_loader: - kv 9: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 10: general.file_type u32 = 15
llama_model_loader: - kv 11: tokenizer.ggml.model str = llama
llama_model_loader: - kv 12: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 13: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 14: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 15: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 16: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 17: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 18: general.quantization_version u32 = 2
llama_model_loader: - type f32: 65 tensors
llama_model_loader: - type q4_K: 193 tensors
llama_model_loader: - type q6_K: 33 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1684 MB
llm_load_print_meta: format = GGUF V2
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 4096
llm_load_print_meta: n_embd = 4096
llm_load_print_meta: n_layer = 32
llm_load_print_meta: n_head = 32
llm_load_print_meta: n_head_kv = 32
llm_load_print_meta: n_rot = 128
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 128
llm_load_print_meta: n_embd_head_v = 128
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 4096
llm_load_print_meta: n_embd_v_gqa = 4096
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 11008
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 4096
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = 7B
llm_load_print_meta: model ftype = Q4_K - Medium
llm_load_print_meta: model params = 6.74 B
llm_load_print_meta: model size = 3.80 GiB (4.84 BPW)
llm_load_print_meta: general.name = LLaMA v2
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOG token = 2 '</s>'
llm_load_print_meta: max token length = 48
llm_load_tensors: offloading 32 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 33/33 layers to GPU
llm_load_tensors: Metal_Mapped model buffer size = 3820.93 MiB
llm_load_tensors: CPU_Mapped model buffer size = 70.31 MiB
..................................................................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 4096
llama_new_context_with_model: n_ctx_per_seq = 4096
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M4 Pro
ggml_metal_init: picking default device: Apple M4 Pro
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M4 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction = true
ggml_metal_init: simdgroup matrix mul. = true
ggml_metal_init: has bfloat = true
ggml_metal_init: use bfloat = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 17179.89 MB
llama_kv_cache_init: Metal KV buffer size = 2048.00 MiB
llama_new_context_with_model: KV self size = 2048.00 MiB, K (f16): 1024.00 MiB, V (f16): 1024.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: Metal compute buffer size = 296.00 MiB
llama_new_context_with_model: CPU compute buffer size = 16.01 MiB
llama_new_context_with_model: graph nodes = 1030
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
llama_load_model_from_file: using device Metal (Apple M4 Pro) - 10213 MiB free
llama_model_loader: loaded meta data with 31 key-value pairs and 111 tensors from /Users/baihuajun/Documents/models/llama-160m.Q8_0.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv 0: general.architecture str = llama
llama_model_loader: - kv 1: general.type str = model
llama_model_loader: - kv 2: general.name str = Llama 160m
llama_model_loader: - kv 3: general.organization str = JackFram
llama_model_loader: - kv 4: general.basename str = llama
llama_model_loader: - kv 5: general.size_label str = 160M
llama_model_loader: - kv 6: general.license str = apache-2.0
llama_model_loader: - kv 7: general.tags arr[str,1] = ["text-generation"]
llama_model_loader: - kv 8: general.languages arr[str,1] = ["en"]
llama_model_loader: - kv 9: general.datasets arr[str,1] = ["wikipedia"]
llama_model_loader: - kv 10: llama.block_count u32 = 12
llama_model_loader: - kv 11: llama.context_length u32 = 2048
llama_model_loader: - kv 12: llama.embedding_length u32 = 768
llama_model_loader: - kv 13: llama.feed_forward_length u32 = 3072
llama_model_loader: - kv 14: llama.attention.head_count u32 = 12
llama_model_loader: - kv 15: llama.attention.head_count_kv u32 = 12
llama_model_loader: - kv 16: llama.attention.layer_norm_rms_epsilon f32 = 0.000001
llama_model_loader: - kv 17: general.file_type u32 = 7
llama_model_loader: - kv 18: llama.vocab_size u32 = 32000
llama_model_loader: - kv 19: llama.rope.dimension_count u32 = 64
llama_model_loader: - kv 20: tokenizer.ggml.model str = llama
llama_model_loader: - kv 21: tokenizer.ggml.pre str = default
llama_model_loader: - kv 22: tokenizer.ggml.tokens arr[str,32000] = ["<unk>", "<s>", "</s>", "<0x00>", "<...
llama_model_loader: - kv 23: tokenizer.ggml.scores arr[f32,32000] = [0.000000, 0.000000, 0.000000, 0.0000...
llama_model_loader: - kv 24: tokenizer.ggml.token_type arr[i32,32000] = [2, 3, 3, 6, 6, 6, 6, 6, 6, 6, 6, 6, ...
llama_model_loader: - kv 25: tokenizer.ggml.bos_token_id u32 = 1
llama_model_loader: - kv 26: tokenizer.ggml.eos_token_id u32 = 2
llama_model_loader: - kv 27: tokenizer.ggml.unknown_token_id u32 = 0
llama_model_loader: - kv 28: tokenizer.ggml.add_bos_token bool = true
llama_model_loader: - kv 29: tokenizer.ggml.add_eos_token bool = false
llama_model_loader: - kv 30: general.quantization_version u32 = 2
llama_model_loader: - type f32: 25 tensors
llama_model_loader: - type q8_0: 86 tensors
llm_load_vocab: special_eos_id is not in special_eog_ids - the tokenizer config may be incorrect
llm_load_vocab: special tokens cache size = 3
llm_load_vocab: token to piece cache size = 0.1684 MB
llm_load_print_meta: format = GGUF V3 (latest)
llm_load_print_meta: arch = llama
llm_load_print_meta: vocab type = SPM
llm_load_print_meta: n_vocab = 32000
llm_load_print_meta: n_merges = 0
llm_load_print_meta: vocab_only = 0
llm_load_print_meta: n_ctx_train = 2048
llm_load_print_meta: n_embd = 768
llm_load_print_meta: n_layer = 12
llm_load_print_meta: n_head = 12
llm_load_print_meta: n_head_kv = 12
llm_load_print_meta: n_rot = 64
llm_load_print_meta: n_swa = 0
llm_load_print_meta: n_embd_head_k = 64
llm_load_print_meta: n_embd_head_v = 64
llm_load_print_meta: n_gqa = 1
llm_load_print_meta: n_embd_k_gqa = 768
llm_load_print_meta: n_embd_v_gqa = 768
llm_load_print_meta: f_norm_eps = 0.0e+00
llm_load_print_meta: f_norm_rms_eps = 1.0e-06
llm_load_print_meta: f_clamp_kqv = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale = 0.0e+00
llm_load_print_meta: n_ff = 3072
llm_load_print_meta: n_expert = 0
llm_load_print_meta: n_expert_used = 0
llm_load_print_meta: causal attn = 1
llm_load_print_meta: pooling type = 0
llm_load_print_meta: rope type = 0
llm_load_print_meta: rope scaling = linear
llm_load_print_meta: freq_base_train = 10000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_ctx_orig_yarn = 2048
llm_load_print_meta: rope_finetuned = unknown
llm_load_print_meta: ssm_d_conv = 0
llm_load_print_meta: ssm_d_inner = 0
llm_load_print_meta: ssm_d_state = 0
llm_load_print_meta: ssm_dt_rank = 0
llm_load_print_meta: ssm_dt_b_c_rms = 0
llm_load_print_meta: model type = ?B
llm_load_print_meta: model ftype = Q8_0
llm_load_print_meta: model params = 162.42 M
llm_load_print_meta: model size = 164.63 MiB (8.50 BPW)
llm_load_print_meta: general.name = Llama 160m
llm_load_print_meta: BOS token = 1 '<s>'
llm_load_print_meta: EOS token = 2 '</s>'
llm_load_print_meta: UNK token = 0 '<unk>'
llm_load_print_meta: LF token = 13 '<0x0A>'
llm_load_print_meta: EOG token = 2 '</s>'
llm_load_print_meta: max token length = 48
llm_load_tensors: offloading 12 repeating layers to GPU
llm_load_tensors: offloading output layer to GPU
llm_load_tensors: offloaded 13/13 layers to GPU
llm_load_tensors: Metal_Mapped model buffer size = 164.64 MiB
llm_load_tensors: CPU_Mapped model buffer size = 24.90 MiB
.......................................................
llama_new_context_with_model: n_seq_max = 1
llama_new_context_with_model: n_ctx = 4096
llama_new_context_with_model: n_ctx_per_seq = 4096
llama_new_context_with_model: n_batch = 2048
llama_new_context_with_model: n_ubatch = 512
llama_new_context_with_model: flash_attn = 0
llama_new_context_with_model: freq_base = 10000.0
llama_new_context_with_model: freq_scale = 1
llama_new_context_with_model: n_ctx_pre_seq (4096) > n_ctx_train (2048) -- possible training context overflow
ggml_metal_init: allocating
ggml_metal_init: found device: Apple M4 Pro
ggml_metal_init: picking default device: Apple M4 Pro
ggml_metal_init: using embedded metal library
ggml_metal_init: GPU name: Apple M4 Pro
ggml_metal_init: GPU family: MTLGPUFamilyApple9 (1009)
ggml_metal_init: GPU family: MTLGPUFamilyCommon3 (3003)
ggml_metal_init: GPU family: MTLGPUFamilyMetal3 (5001)
ggml_metal_init: simdgroup reduction = true
ggml_metal_init: simdgroup matrix mul. = true
ggml_metal_init: has bfloat = true
ggml_metal_init: use bfloat = true
ggml_metal_init: hasUnifiedMemory = true
ggml_metal_init: recommendedMaxWorkingSetSize = 17179.89 MB
llama_kv_cache_init: Metal KV buffer size = 144.00 MiB
llama_new_context_with_model: KV self size = 144.00 MiB, K (f16): 72.00 MiB, V (f16): 72.00 MiB
llama_new_context_with_model: CPU output buffer size = 0.12 MiB
llama_new_context_with_model: Metal compute buffer size = 110.00 MiB
llama_new_context_with_model: CPU compute buffer size = 9.51 MiB
llama_new_context_with_model: graph nodes = 390
llama_new_context_with_model: graph splits = 2
common_init_from_params: warming up the model with an empty run - please wait ... (--no-warmup to disable)
<s> Building a website can be done in 10 simple steps:
Step 1: Define your website's purpose and goals
Step 2: Choose a domain name and web hosting provider
Step 3: Plan your website's design and layout
Step 4: Create content for your website
Step 5: Design and build your website's pages
Step 6: Add features
encoded 19 tokens in 0.155 seconds, speed: 122.295 t/s
decoded 65 tokens in 2.907 seconds, speed: 22.359 t/s
n_draft = 5
n_predict = 65
n_drafted = 125
n_accept = 39
accept = 31.200%
draft:
llama_perf_context_print: load time = 141.23 ms
llama_perf_context_print: prompt eval time = 2603.95 ms / 68 tokens ( 38.29 ms per token, 26.11 tokens per second)
llama_perf_context_print: eval time = 193.91 ms / 100 runs ( 1.94 ms per token, 515.70 tokens per second)
llama_perf_context_print: total time = 3062.81 ms / 168 tokens
target:
llama_perf_sampler_print: sampling time = 1.44 ms / 65 runs ( 0.02 ms per token, 45201.67 tokens per second)
llama_perf_context_print: load time = 2282.95 ms
llama_perf_context_print: prompt eval time = 2751.54 ms / 169 tokens ( 16.28 ms per token, 61.42 tokens per second)
llama_perf_context_print: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
llama_perf_context_print: total time = 3204.07 ms / 170 tokens
ggml_metal_free: deallocating
ggml_metal_free: deallocating
Name and Version
./llama-cli --version version: 4077 (af148c93) built with Apple clang version 15.0.0 (clang-1500.3.9.4) for arm64-apple-darwin23.6.0
Operating systems
Mac
Which llama.cpp modules do you know to be affected?
Other (Please specify in the next section)
Problem description & steps to reproduce
The llama.cpp module is speculative
I was testing speedup of speculative decoding on my mac mini, with a draft model = llama-160m.Q8_0. I found the decoding speed increased when target model is in fp16, but decreased in Q4. I have included my test table and some logs below. Quantization models have much smaller model size and should be decoding faster. I don't understand if the quantization/dequantization overhead could be so large. I want to know if others have encountered similar problems and what could be the cause.
Cmd I run this this
First Bad Commit
No response
Relevant log output